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EXECUTIVE SUMMARY 
 

BACKGROUND 

The design of hydraulic structures requires the estimation of a design flood, which is the 

magnitude of the flood associated with a given probability of exceedance or return period (in 

years). Flood events which impact both infrastructure and livelihoods are classified as disasters. 

Poverty, environmental degradation, and an increase in the demand for natural resources due 

to an increasing population have resulted in an increasing number of people that are vulnerable 

to the impacts of flood events. Therefore, accurate estimations of design floods are required to 

limit the risk to loss of life and failure or over expenditure on hydraulic structures. 

Most currently used methods for design flood estimation in South Africa were developed over 

50 years ago and need updating with additional data currently available and with new 

approaches used internationally. The National Flood Studies Programme (NFSP) aims to 

achieve this; however, no long-term funding has been secured to implement the programme. 

Hence it is necessary to highlight the impacts of floods and the importance of flood estimation 

to potential funding institutions. 

When observed flow data are available at or close to the site of interest, practitioners in South 

Africa generally estimate design floods by performing a frequency analysis of gauged flow 

data. The confidence in the estimated design flood is dependent on the length of record and 

quality of the data. As noted by Pitman (2011) and Pegram et al. (2016), there is a declining 

state in the quantity and quality of the hydrological monitoring network in South Africa, which 

will impact the accuracy and confidence in the estimation of design floods. Hence, it is 

necessary to assess the impact of the declining hydrological networks on design flood 

estimation in South Africa. These results are needed to assess if additional national resources 

should be directed towards maintaining and improving the hydrological monitoring network in 

South Africa. 

Outlier flood events are observed values which are significantly different from the trend of the 

remaining of the dataset. Although guidelines on how to handle outlier events are documented 

for some other countries, they are not part of documented flood estimation procedures in South 

Africa. It is thus necessary to assess the performance of outlier detection methods and the 
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impact of outlier detection and treatment on design flood estimation in South Africa to 

determine if data screening, outlier detection and treatment should be recommended for use. 

The socio-economic impact of flooding in South Africa needs to be assessed, particularly to 

highlight the vulnerability of the increasing population living in flood prone peri-urban areas. 

These results are needed to highlight the impacts of floods and the importance of flood related 

research in South Africa. 

A wide range of issues have been highlighted for research by the NFSP Working Groups and 

the projects with the highest priorities have been assigned to the following two projects: 

(a) Economic and social impacts of floods: Frequency, economic and social impacts of floods, 

including impact on vulnerable/marginal communities. 

(b) Impact of data availability, data quality and data screening on flood estimation and use of 

new technologies for flood estimation: Assess the impact of declining hydrological 

monitoring networks and the use of new technology and data sources for flood estimation. 

 

AIMS 

Given the above background, the aims of this project are to do the following: 

(a) To synthesise and highlight the socio-economic impacts of floods in South Africa. 

(b) To assess the impact of data screening on the estimation of design flood and rainfall events 

in South Africa and make recommendations for local adoption of data screening, outlier 

detection and treatment. 

(c) To assess and quantify the impacts of the declining hydrological network on the estimation 

of design floods and rainfall in South Africa. 

AN ASSESSMENT OF THE SOCIO – ECONOMIC IMPACTS OF FLOODS IN 

SOUTH AFRICA 

Floods are amongst the most destructive natural disasters causing extensive damage to the 

environment and to infrastructure. Globally economic losses due to floods have increased 

significantly and an increasing number of people are affected annually by floods due to an 

increase in population density and establishment of informal settlements. The impacts of floods 

are expected to worsen by future changes in climate and sea-level rise. The increase in the 
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frequency of flood events combined with an increasing population, poor land-use practices, 

and an increasing population living in high flood-risk areas are likely to amplify the current 

levels of flood disaster risk in South Africa. 

There is limited data on flood disasters and associated impacts being collected and assessed, 

particularly in developing countries. The shift towards the management of flood risks has 

highlighted the need for significant efforts to collate and record data to understand the spatially 

disaggregated impacts and actions required in order to identify and minimise risk. 

The aim of this component of the study is to synthesise and highlight the trends in flood 

frequency and socio-economic impacts of floods in South Africa through collation and 

assessment of an inventory of historical flood events developed in this study.  

Data was collected from various sources such as online flood databases, scientific papers, 

reports, publications, maps, documents, and secondary sources such as newspapers and social 

media. Newspapers and scientific papers constitute the majority of the inventory. The compiled 

inventory comprises of a total of 216 documented flood events from 1848 to 2019. To assess 

trends in the collected data, the documented floods needed to be identified as either regional or 

localised floods; however, historical records do not always differentiate between regional and 

localised floods. The documented floods in the inventory were categorised as regional or 

localised floods according to Merz and Blöschl (2003) definition of the events and by using 

available rainfall data (depth and duration), the type of weather system and the extent of the 

area affected. Regional floods are characterised by rainfall over large areas occurring for 

several days. Flash floods are short, high-intensity events which occur locally and impact 

relatively small areas and are considered as localised floods.  

The most documented flood events are along the coastal areas of the KwaZulu-Natal, Eastern 

Cape, and Western Cape Provinces. These areas are located along the coastal regions where 

there are higher occurrences of flood producing weather systems and have higher population 

densities which also increases vulnerability. Localised floods generally occurred in the interior 

regions of the provinces while regional floods generally occurred most frequently along the 

coastal regions. Analysis of the flood events over time show an increase in the number of 

documented floods events for both regional and localised floods. However, based on the 

sources of data, no scientific trends can be deduced in terms of the frequency of flood 

occurrences.  
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To assess the socio-economic impacts, the reported estimated costs of floods in South Africa 

and the reported fatalities due to floods were analysed. A time-series analysis of the 

documented fatalities indicates a general decrease in the number of reported flood-related 

fatalities over time. Estimated costs were standardised to reflect the current Rand value using 

the average annual Consumer Price Index (CPI) from 1980 to 2019 accessed from Statistics 

SA (2019) and CPIs from 1968-1977 were retrieved from the InflationTool (2019). A general 

decrease in the number of reported flood-related fatalities over time is noted for both regional 

and localised flood events; however, an increase is noted from 2000 onward. Based on the data 

sources it is not possible to determine scientific trends in terms of the social and economic 

impacts of floods. 

There is inconsistent reporting of flood events and their associated impacts in South Africa. 

The data sources used mainly focus on regional floods events, and most data is sourced from 

secondary sources such as newspapers with limited data on estimated cost, rainfall data and the 

spatial extent of the impacts. The study has highlighted the challenges and current limitations 

of compiling an inventory on a national scale. Thus, it is recommended an inventory focusing 

on each province will better reflect floods occurring on a finer scale. Scientific trends cannot 

be deduced from the database, however, the impacts of floods have been highlighted in this 

study which shows the importance of flood related research. 

AN ASSESSMENT OF DATA AVAILABILITY, QUALITY AND SCREENING ON 

THE ESTIMATION OF DESIGN FLOODS IN SOUTH AFRICA 

Floods are naturally occurring events which may result in the loss of life, severe economic loss 

and environmental hazards (Smithers, 2012). The nature of extreme flood events worldwide 

are changing over time influenced by changes in climate driven by anthropogenic activities 

such as industrialisation and urbanization (Liu et al., 2017). Climate change has intensified the 

natural variability, magnitude and frequency of extreme weather events resulting in flood 

events (Liu et al., 2017). Furthermore, poverty, environmental degradation and an increase in 

the demand for natural resources has resulted in an increased number of people that are 

vulnerable to the disastrous impacts of floods (CGaTA, 2009). It is therefore essential to 

improve the accuracy of infrastructural design by limiting the risk of failure, to limit the risk to 

loss of life and to limit over-expenditure on hydraulic structures which can be achieved through 

accurate Design Flood Estimation (DFE). Accurate Design Rainfall Estimation (DRE) and 

DFE require long periods of quality-controlled data for the planning, design, operation, and 
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flood risk assessment of hydraulic structures. However, observed hydrological data frequently 

include outlier events and there is a decline in hydrological monitoring in South Africa which 

may impact DRE and DFE. Furthermore, data screening and quality control are necessary to 

ensure that reliable input data are available for DRE and DFE. Data screening and quality 

control are regular practices as described in international literature. Guidelines for data 

screening and quality control include the detection and treatment of outlier events prior to 

Flood Frequency Analysis (FFA) (England Jr et al., 2019). It is therefore necessary to assess 

the impact of outlier events and reduced data availability on DRE and DFE. The aims of this 

component of the study are to: (a) assess the impact of outlier events on DRE and DFE in South 

Africa, (b) assess the performance of outlier detection methods under South African conditions, 

and (c) assess the impact of reduced data availability on DRE and DFE in South Africa.  

Low Outlier (LO) and High Outlier (HO) events were generated and substituted into observed 

and synthetically generated rainfall and streamflow Annual Maximum Series (AMS) for six 

rainfall and streamflow gauges selected in three different climatic regions in South Africa. The 

actual Probability Distribution (PD) of each observed dataset is not known, hence the analysis 

using observed data may be biased for or against a particular PD. Synthetic datasets were 

generated to improve confidence of the analysis by creating AMS datasets from a defined PD. 

Regional Frequency Analysis (RFA) and FFA were performed on observed data and 

synthetically generated data series per gauge using the Generalised Extreme Value (GEV), 

Generalised Pareto (GPA), 3 parameter Kappa (Kappa), Log Normal (LN), and Log Pearson 

Type 3 (LP3) PDs to estimate the 2-, 5-, 10-, 20-, 50-, 100- and 200-year return period events, 

both with and without synthetic outliers. Comparisons between estimated design rainfall and 

floods with and without substituted outliers were then undertaken. The performance of the 

BoxPlot, Modified Z-Score (MSZ) and Multiple Grubbs-Beck Test (MGBT) outlier detection 

methods were assessed. In order to assess the impact of record length on design values, the 

length of the initial observed rainfall and streamflow AMS record of six rainfall and streamflow 

gauges within South Africa were reduced to 75% and 50% by using a moving window 

approach. Three windows each representing a chronological time period for both 75% and 50% 

of the total length of the AMS were chosen. A total of six record length scenarios were created. 

Each record length scenario was then used to estimate design rainfall and floods, and these 

were compared to design events estimated using the entire record length. In order to assess the 

impact of spatial density, the total available rainfall and streamflow gauged network density 

within three homogenous regions in South Africa were reduced to 75% and 50% using a 
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random and systematic gauge reduction method. For both gauge reduction methods, design 

rainfall and flood events at a Point of Interest (PoI) were estimated using an index rainfall and 

flood approach with the reduced network density scenarios and these were compared to design 

events estimated using the total available gauged network density. 

Results from the analysis of observed data show that design rainfall is impacted by up to 22% 

and design floods by up to 45% in the presence of LOs. Design rainfall is impacted by up to 

16% and design floods by up to 46% in the presence of HOs. For synthetically generated data 

series, design rainfall and floods are impacted by up to 2% and 1% respectively in the presence 

of LOs and by up to 13% in the presence of HOs. At best, LOs in observed rainfall and 

streamflow data are under-detected by up to 6% and 30% respectively by the MGBT method, 

whereas HOs are over-detected by up to 50% and 150% respectively by the MZS method. 

Design rainfall and flood events are impacted by up to 4% and 24% respectively by reduced 

record lengths, and by up to 4.5% and 60% respectively from a reduced gauged network.  

This study indicates that data screening and outlier detection should be adopted as regular 

practice in South Africa and that additional national resources must be directed towards 

maintaining and improving the hydrological monitoring networks in South Africa. 
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CHAPTER 1: BACKGROUND 

 
1.1 INTRODUCTION 

The design of hydraulic structures (e.g. dams, flood attenuation structures, culverts) requires 

the estimation of a design flood, which is the magnitude of the flood associated with a given 

probability of exceedance or return period (in years). Flood events which destroy infrastructure 

and livelihoods are classified as disasters (NDMC, 2007). Poverty, environmental degradation 

and an increase in the demand for natural resources due to an increasing population have 

resulted in an increasing number of people that are vulnerable to the disastrous impacts of flood 

events (NDMC, 2007). Therefore, accurate estimations of design floods are required to limit 

the risk to loss of life and to limit the risk of failure or over expenditure on hydraulic structures 

(Van Bladeren et al., 2007).  

As reported by Smithers (2012) and Van Vuuren et al. (2013a), most of the methods currently 

used for design flood estimation in South Africa were developed in the late 1960s and early 

1970s and are in need of updating with more than 40 years of additional data currently available 

and with new approaches used internationally. This resulted in the establishment of the 

National Flood Studies Programme (NFSP), with the aim being to update and modernise 

methods used for design flood estimation in South Africa using the currently available 

hydrological datasets and approaches used internationally. To date, no long-term funding has 

been secured to implement the NFSP. Hence it is necessary to highlight the impacts of floods 

and the importance of flood estimation to potential funding institutions.  

When observed flow data are available at or close to the site of interest, practitioners in South 

Africa generally estimate design floods by performing a frequency analysis of gauged flow 

data. The confidence in the estimated design flood is dependent on the length of record and 

quality of the flow data. As noted by Pitman (2011) and Pegram et al. (2016), there is a 

declining state in the quantity and quality of the hydrological monitoring network (rainfall and 

streamflow) in South Africa, which will have an impact on the accuracy and confidence in the 

estimation of design floods. Hence, it is necessary to assess the impact of the declining 

hydrological networks on design flood estimation in South Africa. This will potentially help 

those responsible for monitoring and maintaining of hydrological networks and water resources 

managers to better understand the impacts of the declining hydrological network. In addition, 
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the impact of the decline in the hydrological monitoring network in South Africa on the 

estimation of design floods needs to be quantified to assess the impact on design flood 

estimation. These results are needed to assess if additional national resources should be directed 

towards maintaining and improving the hydrological monitoring network in South Africa. 

Outlier flood events are observed values which are significantly different from the trend of the 

remaining of the dataset (Lamontagne et al., 2013; England et al., 2017; Lamontagne et al., 

2016). Procedures to screen the data for Potentially Influential Low Flows (PILFs) and extreme 

flood outlier events, or guidelines on how to handle outlier events, are not part of documented 

flood estimation procedures in South Africa (Van der Spuy and Rademeyer, 2010; SANRAL, 

2013b). However, guidelines on how to deal with outlier events are part of flood estimation 

guidelines in some countries, for example, in the USA (IAWCD, 1982; Cohn et al., 2016; 

England et al., 2017).  

There are numerous studies which have developed and applied approaches to detect and 

analyse outliers, including PILFs, which have highlighted the importance of detecting outliers 

in a data series. It is thus necessary to assess the performance of outlier detection methods and 

to assess the impact of outlier detection and treatment on design flood estimation in South 

Africa to determine if data screening, outlier detection and treatment should be recommended 

for use in South Africa. 

The socio-economic impact of flooding in South Africa needs to be assessed, particularly to 

highlight the vulnerability of the increasing population living in flood prone peri-urban areas. 

These results are needed to highlight the impacts of floods and the importance of flood related 

research. 

A wide range of issues have been highlighted for research by the NFSP Working Groups and 

the projects with the highest priorities have been assigned to the following two projects: 

(a) Economic and social impacts of floods: Frequency, economic and social impacts of floods, 

including impact on vulnerable/marginal communities. 

(b) Impact of data availability, data quality and data screening on flood estimation and use of 

new technologies for flood estimation: Assess the impact of declining hydrological 

monitoring networks and the use of new technology and data sources (e.g. remotely sensed) 

for flood estimation.  
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1.2 PROJECT AIMS 

Given the above background, the aims of this project are to do the following: 

(a) To synthesise and highlight the socio-economic impacts of floods in South Africa. 

(b) To assess the impact of data screening on the estimation of design flood and rainfall events 

in South Africa and make recommendations for local adoption of data screening, outlier 

detection and treatment. 

(c) To assess and quantify the impacts of the declining hydrological network on the estimation 

of design floods and rainfall in South Africa. 

The structure of this document is as follows. Chapter 2 contains the detailed methodology and 

results for assessing the socio-economic impacts of floods in South Africa, including a 

discussion, conclusion and recommendations. Chapter 3 contains a detailed literature review 

pertaining to the detection and assessment of the impact of outlier events and data availability 

on design rainfall and floods in South Africa, the detailed methodology and results, discussion, 

conclusion and recommendations. Capacity building on the project is covered in Chapter 4 and 

references are listed in Chapter 5. Appendices are contained in Chapters 6 to 9. 
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CHAPTER 2: AN ASSESSMENT OF THE SOCIO – 

ECONOMIC IMPACTS OF FLOODS IN SOUTH AFRICA 
 

Nelisiwe Khusi, Katelyn Johnson and Jeff Smithers 

2.1 INTRODUCTION 

Floods are amongst the most destructive natural disasters causing extensive damage to the 

environment, and destruction to infrastructure. Globally economic losses due to floods have 

increased significantly (ADPC, 2005; Kundzewicz et al., 2014) and an increasing number of 

people are affected each year by floods due to an increase in population density and 

establishment of informal settlements (UNDP, 2004). The impacts of floods are expected to be 

aggravated by future changes in climate and sea-level rise and will negatively affect 

infrastructure, transport, agricultural, health, tourism, and insurance sectors (IPCC, 2007). The 

increase in the frequency of flood events combined with an increasing population, poor land-

use practices, and an increasing population living in high flood-risk areas are likely to amplify 

the current levels of flood disaster risk and will pose significant challenges for disaster risk 

management in the southern African regions (Davis-Reddy et al., 2017). Therefore, 

understanding these risks and distinguishing main areas of interest is fundamental for forming 

appropriate and practical adaptation policies and scenarios that are sustainable and will 

minimise risk (DEA, 2016).  

Despite flood damage studies being an essential component of flood risk management, it has 

not received much scientific attention (Merz et al., 2010).  According to Messner et al. (2007), 

the consideration of flood damage within the decision-making procedure of flood risk 

management is still moderately new. In contrast to the abundance of available information on 

flood hazards, data on flood damage is limited and damage estimation methods are often basic, 

which results in a poorly justified transfer of flood loss data and models in time, space and 

across damage processes.  

There is limited data on flood disasters and associated impacts being collected and assessed, 

particularly in developing countries (Bouwer et al., 2007; De Groeve et al., 2013; Shrestha et 

al., 2018). This results in the lack of understanding of the linkages between disaster-

development and the disaggregated impacts of disasters on society and various sectors (Field 

et al., 2012; De Groeve et al., 2013). The shift towards the management of flood risks has 
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highlighted the need for significant efforts to collate and record data in order to understand the 

spatially disaggregated impacts and actions required to identify and minimise risk (Merz et al., 

2010; Shrestha et al., 2018). The occurrences of flood events have been progressively 

documented and accounted for by international disaster databases such as the Dartmouth Flood 

Observatory and the international Emergency Events Database (EM-DAT) (Osuteye et al., 

2017). However, these databases only account for events of a major international magnitude, 

not capturing minor events, and have poor linkages with the additional information from local, 

regional and national levels (JRC, 2013). There are inconsistencies, data gaps, and poor 

interoperability, and they lack clear, standardised collection methodologies and definitions 

(Guha-Sapir and Below, 2002). Thus, they are not suitable for analysing impacts at a sub-

national level (JRC, 2013) and highlight the need for decentralising disaster data collection 

because local sources are better positioned to reflect the local conditions and can lead to 

improved data quality (McLean, 2013).  

2.2 AIMS AND OBJECTIVES 

The study aims to synthesise and highlight the trends in flood frequency and socio-economic 

impacts of floods in South Africa through collation and assessment of an inventory of historical 

flood events developed in this study. The specific objectives are as follows:  

(a) Collate an inventory of flood occurrence and their socio-economic impacts.  

(b) Assess historical and recent floods events data to determine trends in the spatial distribution 

and time-series in the information and data collated. 

(c) Assess direct and indirect socio-economic impacts of floods. 

2.3 BACKGROUND 

The United Nations Office for Disaster Risk Reduction (UNISDR) Global Assessment Report 

on Disaster Risk Reduction has highlighted the growing concern for a systematic data 

collection of disaster events to assist in mitigating and preventing disaster risks (UNISDR, 

2017). Collecting and managing information on disaster losses enables stakeholders to assess 

disaster measures, recognise driving factors in loss trends and allow early warning systems to 

be generated (Bouwer et al., 2007). However, current data collating and recording approaches 

differ between organisation, regions, and states (Gall et al., 2009; Corbane et al., 2015) thus, 

historical information on regional, national and global disasters losses are consequently 
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incomplete and often based on inconsistent or poor-quality data (Gunawan and Aldridge, 

2018). 

The South African National Disaster Management Act No.57 of 2002 and the National Disaster 

Management Framework (NDMF) of 2005 provide a well-developed legislative framework to 

guide and support disaster risk reduction (NDMF, 2005; Bruwer et al., 2017). The NDMF 

recognises post-disaster research as a useful tool to systematically collect and record disaster 

loss. It states: “Comprehensive reviews must be conducted routinely after all significant events 

and events classified as a disaster. The findings will directly influence the review and updating 

of disaster risk management plans and will also serve as valuable training aids” (NDMF, 2005).  

In agreement with the NDMF, Holloway et al. (2010) stated that disaster events represent 

realised risks, in which formerly identified flood risks, for instance, occur into real and 

distinguishable flood events. Studies of these events are useful for identifying areas and 

production activities and services that either resisted or failed during a severe flood event. They 

also help provide reasons that certain communities, areas, or structures may be affected 

differently. This can improve development planning and focus risk management efforts. 

However, the spatial and non-spatial data capture of hazard events is very limited, and the level 

of documentation of nationally declared disasters is very low in South Africa (DiMP and UCT, 

2003; Holloway et al., 2010). 

The only available source of documented historical flooding in South Africa is the South 

African Weather Services (SAWS) publication of notable weather events, commonly referred 

to as the CAELUM document. It lacks detailed data on characteristics of the events and their 

associated impacts. The Department of Water Affairs only performed detailed investigations 

into flood systems that caused very large floods, for example (Botes, 2014):  

(a) Kriel (1960) documented floods events that affected the Natal and the Transkei region 

during May 1959,  

(b) Kovacs (1978) documented the January 1978 floods in Pretoria and the Crocodile River 

Catchment,  

(c) Du Plessis (1984) documented the March-May 1981 floods in the South Eastern Cape,  

(d) Kovacs et al. (1985) documented the 1984 Domoina floods, and  

(e) Du Plessis (1984) documented the February-March 1988 Floods in The Orange River 

Basin. 
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The Department of Water Affairs no longer publishes reports nor conducts post-flood disaster 

research (Smithers, 2019). An analysis of the South African Weather Services (SAWS) 

publication of notable weather events (SAWS, 1991) indicated that only flood events that 

resulted in the loss of life or significant damage are recorded, however, the impacts are 

inconsistently documented and rarely updated (Botes, 2014). 

South Africa sources data from the EM-DAT (Bruwer et al., 2017) and has yet to develop a 

comprehensive flood loss database. A draft template for the development of a Central Database 

for declared disasters was developed and circulated internally within the National Disaster 

Management Centre for comment. However, the purpose of the database is to capture all 

declared disasters and capturing of declared disasters was intended to be done in the 2015/2016 

financial year, dating back from 2010/2011 (NDMC, 2016). Thus, it is evident that there is a 

need to develop a national floods loss database capturing events both of a major international 

magnitude and minor events within South Africa. 

2.4 ASSESMENT OF HISTORICAL FLOOD EVENTS 

This section outlines a methodology followed for compiling a historical flood inventory for 

South Africa using the Adhikari et al. (2010) and Barredo (2007) studies as guidelines, and 

assessing the spatial distribution and time-series trends of these flood events.  

2.4.1 Methodology 

Figure 2.1 shows a step-by-step approach used to compile South Africa's historical floods 

inventory. The main steps involve: (a) assigning coordinates for each flood event from 1848 to 

2019, and (b) standardising the reports so that events are not repeated.  
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Figure 2.1 Methodological framework applied to collate an inventory of historical 

flood events for South Africa (after Adhikari et al., 2010) 

To create a list of flood events, data was collected from various sources such EM-DAT, 

scientific papers, reports, publications, maps, documents, and secondary sources such as 

newspapers, social media, and webpages, as listed in Step 1 in Figure 2.1. The coordinates of 

the recorded flood events in the database were determined using Google Earth TM. These were 

further verified with additional information and data where available. Collecting and verifying 

these geo-referenced points for each flood-affected area was labour-intensive and often 

required repeated searches to match the precise location using Google Earth TM. The study 

encountered similar problems mentioned by Adhikari et al. (2010) when trying to define flood 

locations such as the vagueness in the spatial extent of the reported impacts and differences in 

the naming convention of locations, particularly names of locations before 1995. To eliminate 

repetition, each entry was verified with other sources such as ReliefWeb, and Floodlist. 

2.4.1.1 Database development 

In order to create a systematic record, a database was developed with detailed data. Information 

for each event was standardised to meet the requirements of the database and then stored in the 

applicable category. Information on each flood was stored in 13 different categories as 

summarised in   

1

•Collate historical flood inventory (1848-2019)
•Sources: DWAF, SAWS, international databases (i.e. EM-DAT and DFO), Floodlist, 
Reliefweb, scientific papers, annual reports and newspaper articles 

2
•Catalogue events and verify locations using Google Earth and government reports (if 
available) 

3
•Record event source information 
•Data, rainfall recorded, duration of the event, reported fatalities and estimated costs 

4
•Locate and record latitude and longitudinal coordinates of the flood location 

5
•Plot out the point locations on ArcMap
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Table 2.1. 
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Table 2.1 Inventory entry categories used (after Barredo, 2007; Adhikari et al., 2010) 

Categories Description 

FID Flood identification field. Each entry has been given 
a unique Flood Identification number (FID) starting 
from the beginning of the record in 1848. 

Date              
(DD/MM/YYYY) 

Represents the start and end date of the flood event. 

Area affected Location of the flood event within the provinces. 

Longitude and latitude Coordinates of the area affected. 

Weather system A trigger of the flood event such as tropical cyclones, 
cut-off low-pressure systems, thunderstorms, and 
heavy rainfall. 

Significant rainfall 
information 

Rainfall, duration, and intensity recorded before or 
during the flood event. 

Regional or localised Type of flood event: regional or localised. 

River Name of the stream and location where the peak 
discharges values were determined. 

Catchment area km2 Size of the catchment. 

Peak discharge (m3.s-1) Peak discharge values recorded from the gauging 
systems / or estimated. 

Fatalities Flood related fatalities. 

Notes Comments that highlight significant information not 
covered in the categories. 

Estimated cost (Rand) Unadjusted estimated costs. 

References Sources of information. 
 
2.4.1.2 Classifications of flood events  

In order to assess trends in the collected data, the documented floods needed to be identified as 

either regional or localised floods; however, historical records do not always differentiate 

between regional and localised floods. The sources of historical flooding in South Africa only 

record the consequences of floods and provide limited information in terms of characterisation 

of the floods (Botes, 2014). The documented floods in the inventory were categorised as 

regional or localised floods according to the Merz and Blöschl (2003) definition of the events 

and by using available rainfall data (depth and duration), the type of weather system and the 

extent of the area affected. 
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Regional floods are characterised by rainfall over large areas occurring for several days. This 

leads to catchment saturation and high flow river conditions (Merz and Blöschl, 2003), whereas 

flash floods are defined as short, high-intensity rainfall events that result in flooding even under 

relatively dry catchment conditions, where rainfall surpasses infiltration rates resulting in a 

rapid catchment response. These events are usually local and the impact occurs in relatively 

small geographic areas (Merz and Blöschl, 2003). Flash floods and localised floods result from 

similar meteorological events and are mainly distinguished by the catchment response and 

antecedent conditions (Botes, 2014). Thus, flash floods are grouped under localised floods in 

this study. 

Generally, when flooding occurs within 6 hours of a storm event, it is considered a flash flood 

and when it occurs over a number of days its considered a regional flood event (Merz and 

Blöschl, 2003). Therefore, for this study an event was assumed to be a regional or localised 

based on this time frame and the extent of the areas affected. 

2.4.2 Results 

This section presents the initial results from the analyses for both regional and localised floods 

in South Africa with a particular focus on their spatial and time-series distribution. 

2.4.2.1 Sources of data  

Figure 2.2 illustrates the distribution of data sources used to compile the inventory. Newspaper 

articles provided the largest source of information followed by journal articles. In comparison 

to newspapers, journal articles provided comprehensive information on floods of extreme 

magnitude and their socio-economic impacts. Reports from the National Disaster Management 

Centre were generally not cited because the reports often provided total annual estimates 

caused by floods during the year of the report. This study aims to analyse the estimated costs 

per flood event. From 1848 to 1968 the majority of the events were sourced from van Bladeren 

(1992) and Botes (2014). These sources provided extensive hydrological data of the events 

such as rainfall depth and duration, peak discharges and the damage caused to hydrological 

structures, particularly for the KwaZulu-Natal and Eastern Cape provinces and mainly on 

regional and extreme flood events. These sources lacked data on socio-economics impacts and 

most data on fatalities during this period was sourced from Sakulski (2007). There were also 

gaps in information on localised floods. Therefore, data on localised floods was obtained from 

secondary sources such as newspapers, history blogs and social media. These sources lack data 
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on rainfall and peak discharges, however, they provided information on the socio-economic 

impacts.  

 
Figure 2.2 Distribution of data sources used to compile the inventory 

2.4.2.2 Spatial distribution  

Figure 2.3 depicts the spatial distribution of the documented flood events in South Africa. From 

a total of 216 documented flood events, 35 events were not assigned coordinates, generally for 

regional flood events. This is because the areas affected were not properly specified, e.g. the 

December 2010 to January 2011 flood events which affected 8 provinces and 28 Districts in 

South Africa. In these cases, only the provinces are mentioned without specifying areas within 

the provinces that were affected. The unspecified flood events are floods that had location data 

but had limited rainfall data which could be used to determine if the event was regional or 

localised. The Limpopo province had the highest number of unspecified flood events. The most 

documented flood events are along the coastal areas of the KwaZulu-Natal, Eastern Cape, and 

Western Cape provinces. These areas are located along the coastal regions where there are 

higher occurrences of flood producing weather systems and, according to Poolman (2015), 

have higher population densities which also increases vulnerability.  
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Figure 2.3 Spatial distribution of flood events in South Africa from 1848-2019 

 

The province with the most documented floods is KwaZulu-Natal. Figure 2.4 illustrates the 

spatial distribution of floods within KwaZulu-Natal. Localised floods generally occurred in the 

interior regions of the province while regional floods generally occurred most frequently along 

the coastal regions.  

The documentation of flood events by Holloway et al. (2010) focusing on Western Cape, Botes 

(2014) focusing on KwaZulu-Natal and van Bladeren (1992) focusing on Eastern Cape and 

KwaZulu-Natal have influenced the results in showing more flood events being documented 

from these provinces.  
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Figure 2.4 Spatial distribution of flood events in KwaZulu-Natal from 1848-2019 

2.4.2.3 Time-series analysis  

 

 

Figure 2.5 shows the overall time series of the documented occurrences of floods from 1848 to 

2019 using a 10-year interval. The extreme events are floods of extreme magnitude identified 

by van Bladeren (1992). Over the record period the number of documented flood events for 
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both regional and localised floods have increased. In general, the number of documented 

localised floods is higher than the number of regional floods. However, for the periods from 

1848 to 1858, 1868 to 1878, 1928 to 1938, 1998 to 2008, and 2008 to 2019 the number of 

reported localised floods are lower than the number of regional floods. The period from 1908 

to 1918 and from 1968 to 1978 recorded the highest extreme flood events. Although no 

scientific trend can be deduced from the data, an increasing number of documented flood events 

indicates that the frequency of flood events which may have had significant impacts has 

increased and more of these types of events have been documented.  

 

Figure 2.6 Number of documented flood events in KwaZulu-Natal from 1848-2019 illustrates 

a time series of flood events for KwaZulu-Natal. Typically, there are more localised events 

than regional events documented in the province. 
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Figure 2.5 Number of documented flood events in South Africa from 1848-2019 

 
Figure 2.6 Number of documented flood events in KwaZulu-Natal from 1848-2019 

2.5 ASSESSING THE SOCIO-ECONOMIC IMPACTS 

This section presents the methodology for assessing the socio-economic impacts of floods in 

South Africa in terms of the reported estimated costs of floods and the reported fatalities due 

to floods.  

2.5.1 Fatalities 

In order to determine a relative trend in a series of flood-related fatalities, an attempt was made 

to express fatalities in rates by relating the number of documented fatalities to the total 

population of the affected province. However, most of the documented regional floods 

occurred beyond the boundaries of the provinces and often only a total number of fatalities are 
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reported with no detailed information on which areas these fatalities occurred. Therefore, in 

this study fatalities were assessed by looking at the trend of documented fatalities over time. 

2.5.2 Standardisation of the estimated costs  

Estimated costs were standardised to reflect the current Rand value using average annual 

Consumer Price Index (CPI) from 1980 to 2019 accessed from Statistics SA (2019) and CPIs 

from 1968-1977 were retrieved from the InflationTool (2019). Equation 2.1 (USAID, 2009) 

was applied using the CPIs and initial estimated cost of flood events. 

Real Price = Price in 201x x CPI2019
CPI201x

         [2.1] 
where: 

Real Price   = Final estimated costs (ZAR), 

  Price in 201x = Initial estimated cost (ZAR), 

  CPI2019   = 2019 Consumer Price Index, and  

   CPI201x  = Initial Consumer Price Index. 

2.5.3 Results 

The results obtained from the analysis of the collated socio-economic impacts of floods data 

are presented in this section. Figure 2.7 and Figure 2.8 illustrate the number of reported flood-

related fatalities per flood event for regional floods and localised floods respectively. Based on 

the available data, generally, the number of reported fatalities associated with flood events is 

low.  
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Figure 2.7 Number of flood-related fatalities for regional floods in South Africa 

 
Figure 2.8 Number of flood-related fatalities for localised floods in South Africa 

Figure 2.9 and Figure 2.10 illustrate the reported estimated costs for regional and localised 

flood events, respectively. Due to limited data on reported estimated costs, a 51-year period 

from 1968 to 2019 was used, which is half the record length of the data collected. For regional 

flood events the cost associated with flood events increased from the start of the study period 

to a peak in the 1980s. The reported estimated costs dropped in the 1990s and increased in the 

years thereafter. Data on the estimated costs associated with localised flood events is limited; 

however, based on the available data these documented costs have decreased over the study 

period. Overall, the results show that the economic impacts of flood events have cost the 

country millions of Rands. 
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Figure 2.9 Reported estimated costs for regional floods in South Africa 

 

Figure 2.10 Reported estimated costs for localised floods in South Africa 

2.6 DISCUSSIONS, CONCLUSIONS AND RECOMMENDATIONS 

The results drawn using the collated data show an overall increase in the number of documented 

flood events in South Africa. The most documented flood events are along the coastal areas of 

the KwaZulu-Natal, Eastern Cape, and Western Cape provinces. KwaZulu-Natal had the most 

documented floods, and a spatial analysis shows more regional floods are along the coastal 

area and localised floods occur most in the interior regions of the province. Overall an 

increasing number of documented flood events indicates that the reported frequency of flood 

events which may have had significant impacts has increased over time and more of these types 
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of events have been documented in recent years. It is acknowledged that the increase in the 

frequency of reported flood events does not infer a change in the magnitude or frequency of  

floods, as the reported impacts of the flood events could be related to, for example, blocked 

drains and increased habitation in flood plain areas.  

Generally, the number of reported fatalities associated with flood events is low. This is likely 

due to the lack of data available on the social impacts of floods. The estimated costs associated 

with flood events has fluctuated over time; however, the results show that the economic impacts 

of flood events have cost the country millions of Rands. 

There is inconsistent reporting of flood events at local, provincial, and national level, and only 

floods at the national scale are generally reported. The data sources used mainly focus on 

regional floods events, and most data is sourced from secondary sources such as newspapers 

with limited data on estimated cost, rainfall data and the spatial extent of the impacts. Assigning 

point values to represent flood events contributes to additional uncertainty to the exact flood 

location and the extent of flood damage, particularly for regional floods since they occur over 

a large geographical area. 

The study has highlighted the limitations of compiling an inventory of floods and flood impacts 

on a national scale. Thus, it is recommended an inventory focusing on each province will better 

reflect floods occurring on a finer scale. For improved reporting and transfer of flood data over 

time, a template should be created consisting of significant categories infilled during a flood 

event for all flood types. Such a template can include the categories used in this study to 

compile the inventory of historical flood events. Flood damage assessments and post-flood 

research should be conducted in order to determine accurate estimates and the full extent of the 

impacts of flood events.  

Although limitations in the database prevent any clear scientific trends, the impacts of floods 

have been highlighted where possible in this study which shows the importance of flood related 

research. 
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CHAPTER 3: DETECTING AND ASSESSING THE 
IMPACTS OF OUTLIER EVENTS AND DATA 

AVAILABILITY ON DESIGN RAINFALL AND FLOOD 
ESTIMATION IN SOUTH AFRICA 

 
Keanu Singh, Jeff Smithers and Katelyn Johnson 

3.1 INTRODUCTION 

Floods are naturally occurring events which may result in the loss of life, severe economic loss 

and environmental hazards (Smithers, 2012). The nature of extreme flood events worldwide 

are changing over time, and influenced by changes in climate driven by anthropogenic 

activities such as industrialisation and urbanization (Liu et al., 2017). Climate change has 

intensified the natural variability, magnitude and frequency of extreme weather events resulting 

in flood events (Liu et al., 2017). Furthermore, poverty, environmental degradation and an 

increase in the demand for natural resources has resulted in an increased number of people that 

are vulnerable to the disastrous impacts of floods (CGaTA, 2009). It is therefore essential to 

improve the accuracy of infrastructural design which can be achieved through accurate Design 

Flood Estimation (DFE).  

Design floods are flood events with a given probability of exceedance. Design flood events are 

used in, inter alia, estimating environmental or ecological flows, managing water rights and 

transboundary water issues, the planning, design and operation of hydraulic structures, the 

development of flood forecasts and early warning systems aimed at protecting lives and 

property, and for educational and research purposes (USGS, 2006; Van Bladeren et al., 2007). 

There are numerous DFE methods available for application in practice in South Africa 

(Smithers, 2012; SANRAL, 2013a; Van Vuuren et al., 2013b; Van der Spuy and Rademeyer, 

2018). These methods were derived from rainfall and streamflow data which are the two 

primary sources of hydrological data (Dent, 1994). Accurate DFE is required to improve the 

accuracy of infrastructural design by limiting the risk of failure, to limit the risk to loss of life 

and to limit over-expenditure on hydraulic structures.  

Data screening and quality control are necessary to ensure that reliable input data are available 

for DFE. Data screening and quality control is regular practice as described in international 

literature, e.g. in United States of America (USA): Bulletin 17B and Bulletin 17C (England Jr 

et al., 2019), Australia: Australian Rainfall and Runoff (Ball et al., 2016), United Kingdom 
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(UK): Flood Estimation Handbook (Robson and Reed, 1999) and in many European countries: 

FloodFreq Cost Action ES0901 (Madsen, 2013). Guidelines for data screening and quality 

control include the detection and treatment of outlier events prior to Flood Frequency Analysis 

(FFA) (England Jr et al., 2019).  

Outlier events are observations which significantly depart from the trend of the remaining 

dataset (Lamontagne et al., 2013; Lamontagne et al., 2016; England Jr et al., 2019). Outlier 

events affect sample statistics and are potentially influential on Design Rainfall Estimation 

(DRE) and DFE (Lamontagne et al., 2013; England Jr et al., 2019). It is therefore necessary to 

assess the impact of outlier events on DRE and DFE and to assess the performance of outlier 

detection methods for potential use in South Africa (SA).  

Observed data with sufficient quantity increases confidence in DRE and DFE, therefore 

enhancing the value of information as understood by the public and private sectors (Van 

Bladeren et al., 2007). However, there is a decline of hydrological monitoring both 

internationally (Lorenz and Kunstmann, 2012; Muller et al., 2015; Stewart, 2015; Sunilkumar 

et al., 2016) and in SA (Pitman, 2011; Pegram et al., 2016) which is a pressing concern for 

many practitioners and policy developers (Stewart, 2015). The urgent need to assess the impact 

of outlier events and data availability on DFE in SA is highlighted by the National Flood Study 

Program (NFSP) (Smithers et al., 2014).  

3.1.1 Research questions 

This study will address the following questions: 

(a) What is the impact of Low Outlier (LO) and High Outlier (HO) events on DRE and DFE 

and should outliers be excluded from DRE and DFE in SA? 

(b) What is the performance of outlier detection methods in detecting LO’s and HO’s under 

South African conditions, and should outlier detection be regular practice in DRE and DFE 

in SA? 

(c) What is the impact of declining data availability, i.e. rainfall and streamflow record lengths 

and monitoring network density, on DRE and DFE in SA?  
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3.1.2 Aims and objectives 

Aims of the study are the following: 

(a) Assess the impact of LO and HO events on DRE and DFE in SA. 

(b) Assess the performance of outlier detection methods under South African conditions.  

(c) Assess the impact of reduced data availability on DRE and DFE in SA. 

Specific objectives to meet the aims include the following: 

(a) Undertake a comprehensive review of the relevant literature. 

(b) Estimate design rainfall and floods using observed data and synthetically generated data 

series both with and without outliers [Aim (a)]. 

(c) Determine the impact of the introduction of LO and HO events on DRE and DFE [Aim 

(a)]. 

(d) Apply the BoxPlot (BP), Modified Z-Score (MZS) and Multiple Grubbs-Beck Test 

(MGBT) methods and assess their performance in detecting outlier events [Aim (b)].  

(e) Evaluate the impact of reduced rainfall and streamflow record length for different periods 

of time on DRE and DFE [Aim (c)]. 

(f) Evaluate the impact of a reduced rainfall and streamflow gauged density and proximity on 

DRE and DFE by means of a random and systematic reduction of gauges [Aim (c)]. 

3.2 BACKGROUND 

3.2.1 Assessment of data availability  

An assessment and evaluation of available water resources is essential for water resource 

management. The socio-economic and political history of SA has presented many challenges 

in collecting and maintaining rainfall and streamflow data (Hughes, 2008). However, despite 

these challenges, an adequately functioning hydrological monitoring network is required 

nationwide to, inter alia, provide information to enable well informed investment decisions in 

water resource management infrastructure (e.g. water supply and irrigation schemes) and to 

provide accurate and timely warning for floods and drought events (Sene and Farquharson, 

1998). The use of observed data, with sufficient quantity and quality, from available networks 

also increases confidence in DRE and DFE, therefore enhancing the value of information as 

understood by the public and private sectors (Van Bladeren et al., 2007). An evaluation of the 

currently available hydrological monitoring networks is therefore required prior to its 
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application (Muller et al., 2015). A review of the current rainfall and streamflow monitoring 

networks in SA and factors, such as network density, record length and gauge proximity, which 

affect the quantity and quality of observed data, are detailed in Section 3.2.1.1 and Section 

3.2.1.2, respectively. 

3.2.1.1 Rainfall data 

The South African Weather Services (SAWS) holds the primary responsibility for collecting 

rainfall data in SA. Rainfall data is also collected by organisations such as the Agricultural 

Research Committee (ARC), the South African Sugar Association (SASA), the South African 

Environmental Observation Network (SAEON) and many private individuals. Figure 3.1 

shows the annual active daily rainfall gauges in each year from a daily rainfall database 

maintained by the Climate System Analysis Group (CSAG) at the University of Cape Town. 

There is a declining trend of active rainfall gauges from the year 1980, as shown in Figure 3.1. 

An average decline of 25% per decade over three decades (i.e. 1979 to 2009) and a total decline 

of approximately 60% between 1979 and 2009 was calculated from Figure 3.1. The SAWS 

rainfall gauge network currently has approximately 1 200 rainfall gauges open which is 

approximately equivalent to the number of rainfall gauges open in 1930 (Pegram et al., 2016). 

The decline in the South African rainfall monitoring networks has had severe impacts on water 

resource management such as the calculation of irrigation demands and losses from reservoirs and 

wetlands (Pitman, 2011). 

 
Figure 3.1 Annual active daily rainfall gauges in each year from the daily rainfall 

database maintained by CSAG (Pegram et al., 2016) 
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Regarding the importance of record length, Boughton (2007) showed through the use of the 

Australian Water Balance Model (AWBM) that over-estimation of long-term runoff 

substantially reduces when 10 or more years of calibrated simulated runoff are available, 

although the under-estimation of runoff is still high even when 20 years of simulated runoff 

was used. Further, results have shown that an increase in record length improves the estimated 

rainfall characteristics and decreases errors in model estimates (Boughton, 2007). The use of a 

rainfall-runoff model to extend the records of less than 15 years will improve the estimates of 

long-term runoff (Boughton, 2007). Knisel et al. (1979) suggests that using short term records 

creates biased Mean Annual Precipitation (MAP) estimates, especially in semi-arid regions. 

Dyler and Tyson (1977) highlighted that the period of available records influences its 

applicability as quasi-periodic fluctuations of rainfall generally occurs throughout recorded 

observations and thus Dent et al. (1987) states that a record of sufficient length is necessary to 

cover these quasi-periodic fluctuations, irrespective of the period when the observations were 

recorded. Dent et al. (1987) concludes that minimum lengths of record varies between regions 

with longer periods required in arid regions than in wetter regions. Smithers and Schulze 

(2000a) developed a short duration (i.e. sub-daily) rainfall database consisting of 412 stations 

throughout SA, and Smithers and Schulze (2000b) developed a long duration (i.e. daily) rainfall 

database consisting of 11 171 stations throughout Southern Africa. Figure 3.2 shows the 

distribution of record lengths within the short duration rainfall database and Figure 3.3 shows 

the distribution of record lengths within the long duration rainfall database in Southern Africa. 

It is shown in Figure 3.2 that the majority of short duration rainfall is less than 20 years, and in 

Figure 3.3 that the majority of long duration rainfall is less than 25 years, which indicates a 

lack of longer-term monitoring.  
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Figure 3.2 Distribution of record lengths in the short duration rainfall database for 

South Africa (after Smithers and Schulze, 2000a) 

 
Figure 3.3 Distribution of record lengths in the long duration rainfall database for 

Southern Africa (after Smithers and Schulze, 2000b) 

Regarding rainfall gauge density, rainfall events vary spatially within a catchment and a dense 

rainfall gauge network is able to better capture rainfall characteristics such as the magnitude 

and distribution of a rainfall event (Krajewski et al., 2003). A denser rainfall gauge network 

improved total simulated streamflow (St‐Hilaire et al., 2003), reduced errors in simulated peaks 

(Bárdossy and Das, 2008), improved areal estimates of rainfall and reduced under-estimation 

of cumulative rainfall (St‐Hilaire et al., 2003; Bárdossy and Das, 2008). Xu et al. (2013) also 
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showed that a larger sample of rainfall gauges improves the estimation of the MAP. The 

influence of rainfall gauge density is, however, dependent on factors such as rainfall type, 

topography, seasonality of precipitation and land use (Stewart, 2015). 

Rainfall gauge location is another important consideration in DRE and DFE. Runoff is better 

estimated with an improved distribution of rainfall gauge locations rather than a more dense, 

but unevenly distributed rainfall gauge network (Xu et al., 2013). St‐Hilaire et al. (2003) 

concluded that the quality of data from a network is further improved with well-located rainfall 

stations and not only by a denser network. An analysis of the percentile, variances and means 

can be performed to identify gaps in a rainfall gauge network, and hence, gauges may be 

strategically placed in order to obtain the maximum usefulness of data (St‐Hilaire et al., 2003). 

Pegram et al. (2016) highlighted that gauges sparser than a radius of 35 km2 per gauge show 

very small spatial correlation at a daily scale and could be treated as independent gauges. 

Elevation influences the distribution of meteorological variables such as temperatures, 

precipitation mechanisms and the rate of evaporation and is therefore another important 

consideration in rainfall gauge location (Bárdossy and Das, 2008).  

Innovative technologies such as satellite-based remotely sensed data have been developed as a 

supplementary method of collecting rainfall data. However, without the presence of a dense 

gauge network, there is no meaningful manner of ground truthing remotely sensed data 

(Pegram et al., 2016). Weather radar has also been used to measure rainfall, however, the use 

of raw radar data alone has introduced many errors in flood estimates (Sun et al., 2000). The 

usefulness of radar data is increased when calibrated and combined with in situ rainfall gauge 

data (Sun et al., 2000). A further concern is the lack of overlapping data periods between in 

situ and remotely sensed data (Hughes, 2008).  

3.2.1.2 Streamflow data 

The first long-term daily streamflow stage measurement in South Africa started in 1865 on the 

Van Stadens River and was initiated by the Port Elizabeth Town Council (Wessels and 

Rooseboom, 2009). The Department of Water and Sanitation (DWS) is currently responsible 

for monitoring water flow in SA (Pitman, 2011). Figure 3.4 shows the number of useful 

streamflow gauges, as determined by the project team, open in each year in SA as derived from 

the flow data set used in the WR2005 water resource assessment study (Middleton and Bailey, 

2008; Pitman, 2011; Bailey and Pitman, 2016). There was a relatively slow start in developing 
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the gauging network before 1950, a rapid growth after World War II, a peak in the 1980’s, and 

a steady decline in the number of useful gauges thereafter as shown in Figure 3.4.  

 
Figure 3.4 Number of useful streamflow gauges open in each year in South Africa 

(Pitman, 2011) 

Data for 1 458 streamflow gauging stations and 89 synthesised dam inflow records located 

throughout South Africa were obtained from the DWS in a study by Nathanael (2015). A set 

of criteria were applied to filter these records and a final total of 1 097 stations were selected 

for further analysis. The criteria used by Nathanael (2015) were as follows: 

(a) The available record length must have a minimum of 20 years of data. 

(b) The station of interest must not be located at an outlet of a dam or significantly influenced 

by the presence of an upstream dam. 

(c) The gauging station must be a river gauging station and not a natural spring, canal or 

 pipeline. 

(d) The percentage of the rating table exceedance must not be greater than or equal to 20% of 

the record. 

The distribution of record lengths of the 1 097 stations, of which the majority of flow gauging 

weirs have less than 40 years of record, are shown in Figure 3.5. 
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Figure 3.5 Distribution of record lengths for all flow gauging weirs across South 

Africa (Nathanael, 2015) 

Related to streamflow record length, Pool et al. (2019) highlighted the importance of short 

record lengths in parameter regionalisation for design flood prediction in ungauged catchments. 

Results by Pool et al. (2019) showed that datasets with a minimum of three observations from 

a single hydrological year improved regionalisation for the majority of catchments and further 

highlighted that datasets with three observations have a similar value in design flood prediction 

compared to datasets with 24 observations. Pool et al. (2019) concluded that datasets with short 

record lengths are valuable for decision making in ungauged catchments and these findings are 

consistent with results from Viviroli and Seibert (2015) and Rojas‐Serna et al. (2016).  

In a statistical approach to DFE, i.e. FFA, the assumption of stationarity of extreme events are 

often made irrespective of available record length and period of record which may be invalid 

in catchments that are sensitive to climate variability and/or anthropogenic factors such as, 

inter alia, urbanisation, deforestation, and land degradation (Koutsoyiannis et al., 2009). 

Studies by Zhang et al. (2001) and Montanari and Koutsoyiannis (2014) have questioned the 

assumption of stationarity. Šraj et al. (2016) assessed the impacts of assuming stationarity on 

FFA by using one stationary and three non-stationary models, i.e. models which had varying 

Probability Distribution (PD) parameters. Results indicated that all three non-stationary models 

fitted maximum annual floods better than the stationary model. The results have also 

highlighted the difference in quantile estimates between stationary and non-stationary models, 

wherein the stationary model generally underestimated flood quantiles in more recent records. 

Šraj et al. (2016) concluded that the unjustified assumption of stationarity in FFA could lead 

to an under-estimation of extreme floods and therefore suggests applying non-stationary 
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models in FFA. Chen and Ramachandra (2002) examined the stationarity of data series from 

four hydrological data sources, i.e. streamflow, temperature, precipitation, and Palmer’s 

Drought Severity Index (PDSI) series between 1900 and 1980 in the mid-western United States 

including Iowa, Indiana, Michigan and Wisconsin. Chen and Ramachandra (2002) concluded 

that, inter alia, more streamflow and PDSI data series were identified as non-stationary 

compared to temperature and precipitation data series, and only two periods of time between 

1900 and 1980 were commonly identified as non-stationary across all four data sources 

indicating a difference in the detection of stationarity between hydrological data series. The 

detection of stationarity of streamflow data has a further complexity as streamflow discharges 

are dependent on climatic factors and other variables such as antecedent soil moisture and land 

use change which is difficult to predict under future conditions (Bezak et al., 2015).  

Streamflow gauge network density is another important consideration in DFE as information 

such as hydrological response patterns can be transferred from gauged to ungauged catchments 

(Hrachowitz et al., 2013). Despite this importance, Lebecherel et al. (2016) states that the 

impact of hydrometric data density is not a prioritised concern in literature and efforts to assess 

the impacts of gauge density are necessary. Lebecherel et al. (2016) tested the regionalisation 

efficiency, which is a measure used to evaluate the robustness of the regionalisation method, 

of the GR4J model on 609 catchments using the Random Hydrometrical Reduction (HRand) 

method and the Hydrometric Desert Method (HDes) of gauge reduction. Lebecherel et al. 

(2016) defined robustness as the degree at which the performance of the regionalisation method 

degrades when the hydrometric network becomes sparser from either gauge reduction method. 

HRand aims to randomly reduce the available gauge network of donor catchments by 10% to 

90%. Furthermore, the number of donor catchments remain the same but are located on average 

further from the receiver catchment (Lebecherel et al., 2016). HDes aims to progressively 

exclude the closest donor catchments (Lebecherel et al., 2016). Two conclusions were drawn 

from this study, i.e. (a) a decrease in regionalisation efficiency occurred when applying both 

the HRand and HDes methods, and (b) there is a more abrupt decrease in regionalisation 

efficiency when applying the HDes method compared to the HRand method. Lebecherel et al. 

(2016) recommends using the HDes method to assess regionalisation efficiency to generate 

worst-case scenario outcomes.  

Regarding spatial proximity of gauges, Tobler’s (Tobler, 1970) first law of Geography states 

that “everything is related to everything else, but near things are more related than distant 
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things” which is particularly important in the context of gauge proximity in a gauged network, 

as factors such as, inter alia, climate, geology, soil, topography and land cover vary over space 

(Lebecherel et al., 2016). Pool et al. (2019) highlighted that spatial proximity of gauges within 

a relatively dense streamflow gauging network is an important consideration accounting for 

relevant climate and catchment related attributes that influence hydrograph generation.  

3.2.2 Outlier events and outlier detection methods 

Raw at-site flow data are usually associated with several common issues such as the 

exceedance of discharge tables and presence of outlier events which requires data screening 

and pre-processing before use (Van Vuuren et al., 2013b; England Jr et al., 2019). Data 

screening and pre-processing requires skill and experience, and is often the responsibility of 

the analyst to further examine data afterwards (Asikoglu, 2017). Data screening and pre-

processing within this study addresses LO and HO events in Section 3.2.2.1 and Section 3.2.2.2 

respectively, and outlier detection methods are reviewed in Section 3.2.2.3.  

3.2.2.1 Low outlier events 

Outlier events are data points which significantly depart from the trend of the remaining dataset 

(Lamontagne et al., 2013; Lamontagne et al., 2016; England Jr et al., 2019). LOs are 

significantly small events which may be the result of catchment characteristics such as 

evaporation exceeding annual rainfall or channel infiltration (Paretti et al., 2014; Lamontagne 

et al., 2016; England Jr et al., 2019).  

In particular, Potentially Influential Low Flows (PILF) are LOs which affects sample statistics 

such as the mean, standard deviation and coefficient of skewness, and results in biased 

parameter estimates (Asikoglu, 2017; England Jr et al., 2019). PILFs may also distort the 

exceedance probabilities of large events and therefore the detection and treatment of PILFs 

allows for an improved DFE (Lamontagne et al., 2016). The Log-Pearson Type III (LP3) and 

Log-Normal (LN) PDs are sensitive to PILFs whereas the Generalised Extreme Value (GEV) 

PD is not as sensitive (Plavšić et al., 2014). PILFs may be managed in numerous ways which 

include: (a) selecting a fitting technique which places less weight on small events, such as the 

Linear Moments (Hosking and Wallis, 1997; Rowinski et al., 2002) and real-space Method Of 

Moments (MOM) techniques, (b) the use of a mixed distribution, and (c) adoption of a Peaks 

Over Threshold (POT) method (Lamontagne et al., 2016). However, effort should first be on 

the detection of PILFs (Lamontagne et al., 2016). 
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Graphical and statistical methods were developed through numerous studies to detect LOs 

(Whitacre et al., 2006; Asikoglu, 2017). Grubbs and Beck (1972) developed the Grubbs-Beck 

Test (GBT) which is prescribed in Bulletin 17B for use in the USA. A regression analysis to 

detect outliers was also used and highlighted the importance of detecting outliers in a data 

series (Pegram, 1997). The Spatial Consistency test was developed to detect outliers in rainfall 

gauge measurements which can further be verified using remotely sensed data (Kondragunta, 

2001). The Multiple Grubbs-Beck Test (MGBT) was developed to overcome the shortfall of 

the GBT, i.e. it’s poor performance in detecting multiple LOs (Cohn et al., 2013) and is 

prescribed by Bulletin 17C for use in the USA (England Jr et al., 2019). 

Asikoglu (2017) applied the Modified Z-Score method (MZS) (Iglewicz and Hoaglin, 1993), 

Quality Control (QC) test (Kondragunta, 2001), BoxPlot method (BP), GBT and the Stedinger 

test (Stedinger et al., 1993) for the detection of outliers. Each of these five methods assign a 

critical value to each observation. An observation is classified as an outlier if it’s assigned 

critical value is above or below a predetermined threshold value. Results from Asikoglu (2017) 

show that: (a) each of the above five methods show different precisions in the detection of 

outliers, (b) the BP method was the most precise method followed by the MZS, and (c) the 

GBT and Stedinger Tests flagged the least number of outliers compared to the other tests. 

Rahman et al. (2014) assessed the performance of the GBT and MGBT for six gauging stations. 

For three of these stations the GBT did not detect any PILF’s whereas the MGBT detected 46% 

to 57% of the annual maximum flood peaks as PILF’s (Rahman et al., 2014). For the other 

three stations, the GBT detected one PILF in each station whereas the MGBT identified 45% 

to 51% of the events as PILF’s (Rahman et al., 2014). For the six stations, there was an 

estimated 61% difference in flood quantile estimates for these two methods. It was concluded 

that the MGBT be used rather than the GBT (Rahman et al., 2014). Van der Spuy and 

Rademeyer (2018) recommend using the standardised Z-Score method for detecting outliers in 

South Africa, however, treatment of identified outliers is under the discretion of the analyst. 

Details of the BP, standardised Z-score, MZS and MGBT are provided in Section 3.2.2.3. 

3.2.2.2 High outlier events 

HO events are large magnitude events which significantly depart from the trend of the 

remaining dataset (Costa and Jarrett, 2008; England Jr et al., 2019). HO events provide 

valuable information and are of interest when estimating design event magnitudes and 

frequency, as such events have a low probability of exceedance and have a direct influence on 
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the fitting of frequency distributions (Costa and Jarrett, 2008; England Jr et al., 2019). HOs 

can be identified using the BP method, MZS, regional flood-peak envelops, time series plots 

or flood peak ratios (Costa and Jarrett, 2008; Asikoglu, 2017). It is recommended that HOs be 

retained and used in frequency analysis however judgement by an analyst is ultimately required 

on whether to include or exclude HOs from further analysis (England Jr et al., 2019).  

3.2.2.3 Outlier detection methods 

Numerous outlier detection methods are available, however, only the BP, MGBT, MZS and 

standardised Z-Score are detailed in this section. The BP and MZS were chosen due to their 

detection performance as indicated by Asikoglu (2017) and the relative ease of use. The MGBT 

was also chosen due to detection performance indicated by Rahman et al. (2014) and is part of 

the guidelines for FFA (England Jr et al., 2019). The standardised Z-Score was chosen as it is 

the suggested method by the DWS (Van der Spuy and Rademeyer, 2018). 

3.2.2.3.1 BoxPlots 

The length of the box is first calculated, which is the difference between the third (Q3) and first 

(Q1) quartiles of the dataset, i.e. the Inter-Quartile Range (IQR). Any observation greater than 

1.5 box lengths from the sample’s maximum observation or less than 1.5 box lengths from the 

sample’s minimum observation is classified as an outlier (Asikoglu, 2017). Figure 3.6 depicts 

the classification of an outlier using the box plots method. 

 

 
Figure 3.6 Classification of an outlier using the BoxPlot method (Asikoglu, 2017) 
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3.2.2.3.2 Standardised Z-Score 

Van der Spuy and Rademeyer (2018) recommend using the standardised Z-Score in SA. A Z-

Score for each observation in an Annual Maximum Series (AMS) is calculated using Equation 

3.1 and observations with Z-Scores greater than 3 or less than -3 are classified as outliers.  

Zi = 𝑥𝑥𝑖𝑖− 𝑥̅𝑥
𝑆𝑆

                   [3.1] 

where: 

   Zi = Z-Score of the ith observation, 
  𝑥𝑥𝑖𝑖 = ith observation, 

𝑥̅𝑥  = mean of sample AMS, and 
S = standard Deviation of the sample AMS. 

3.2.2.3.3 Modified Z-Score 

The standardised process aims to convert each data observation into a unit of standard deviation 

to express the distance of each observation from the mean of the sample in comparable units. 

This is problematic as outliers affect both the mean and standard deviation, hence calculated 

standardised Z-Scores are often not larger than the pre-determined threshold, therefore they 

will not be identified as outliers (Iglewicz and Hoaglin, 1993). The standardised Z-Score was 

therefore modified by Iglewicz and Hoaglin (1993) using robust statistics, which have a greater 

resistance to the influence of outliers than standard statistics, in the Z-Score formula. The MZS 

test is shown in Equation 3.2. An outlier is defined as having an absolute modified Z-Score 

greater than 3.5 (Iglewicz and Hoaglin, 1993). 

𝑍𝑍𝑖𝑖  = 0.675(𝑥𝑥𝑖𝑖 −  𝑥𝑥0.5)/𝑀𝑀𝑀𝑀𝑀𝑀        [3.2] 

where: 

𝑍𝑍𝑖𝑖 = Z-score, 
𝑥𝑥𝑖𝑖  = observation of interest, 

  𝑥𝑥0.5  = sample median, and 
  MAD = calculated using Equation 3.3. 
 

MAD = 1
𝑁𝑁

 ∑ │𝑥𝑥𝑖𝑖 −  𝑥𝑥0.50│𝑁𝑁
𝑖𝑖=1                 [3.3] 

where: 

MAD = Median Absolute Deviation, 
  N = sample size, 

𝑥𝑥𝑖𝑖  = observation of interest, and 
𝑥𝑥0.5  = sample median. 
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3.2.2.3.4 Multiple Grubbs-Beck test 

The Multiple Grubbs-Beck Test (MGBT) is a generalization of the GBT (Lamontagne et al., 

2013). The GBT, as shown in Equation 3.4, classifies any event less than X𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 as a LO (Grubbs 

and Beck, 1972).  

X𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  = 𝜇̂𝜇 − 𝐾𝐾𝑛𝑛𝜎𝜎�           [3.4] 

where: 

  X𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = low outlier threshold, 

  𝜇̂𝜇 = sample mean, 

  𝐾𝐾𝑛𝑛 = 10% significance value for an independent sample of n normal variates,  

  𝜎𝜎� = sample standard deviation. 

The MGBT is preferred to the GBT because it is able to consistently identify multiple LOs and 

it is shown to improve the extreme quantile estimators of negatively skewed data (Lamontagne 

et al., 2013). The MGBT involves sequentially evaluating a test statistic, ω�  shown in Equation 

3.5, for each flood peak in a dataset (Lamontagne et al., 2013; England Jr et al., 2019). The 

MGBT systematically tests the hypothesis that k samples in the left-hand tail are from the same 

sample of the remaining population which is normally distributed (Lamontagne et al., 2013; 

England Jr et al., 2019). 

ω� [𝑘𝑘,N] = 
𝑋𝑋[k,𝑁𝑁]− 𝜇𝜇�k

𝜎𝜎�k�
                             [3.5] 

where: 

  ω� . = test statistic, 

  k = kth smallest flood peak, 

  N = sample size, 

  𝑋𝑋[k,𝑁𝑁] = the logarithm of the kth smallest flood peak in an ordered sample, 

  𝜇̂𝜇k = partial mean for all flood peaks larger than 𝑋𝑋[k,𝑁𝑁], and 

  𝜎𝜎�k = partial standard deviation for all flood peaks larger than 𝑋𝑋[k,𝑁𝑁]. 

The critical value, ƞ, shown in Equation 3.6, is then compared to the test statistic ω� . The critical 

value is the probability given a null hypothesis (H0) of obtaining a value of ω� [𝑘𝑘,𝑁𝑁] that is less 

than that observed in the sample (Lamontagne et al., 2013; England Jr et al., 2019). The critical 



Impacts of Floods and Data Availability, Data Quality and Data Screening on the Estimation of Design Floods 

 

36 

value can be calculated by integrating the distributions of 𝑍𝑍[k,𝑁𝑁], µ�𝑍𝑍,𝑘𝑘 and 𝜎𝜎�𝑍𝑍,𝑘𝑘 (Lamontagne et 

al., 2013; England Jr et al., 2019). 

  𝑝𝑝�ω� [𝑘𝑘,𝑁𝑁] < ƞ� = 𝑝𝑝[𝑍𝑍[k,𝑁𝑁]−µ�𝑍𝑍,𝑘𝑘

𝜎𝜎�𝑍𝑍,𝑘𝑘
<  ƞ]                 [3.6] 

where: 

p = probability, 

  𝑍𝑍[k,𝑁𝑁] = kth-order statistic, 

  N = sample size, 

  µ�𝑍𝑍,𝑘𝑘 = partial mean for all flood peaks larger than 𝑍𝑍[k,𝑁𝑁], and 

  𝜎𝜎�𝑍𝑍,𝑘𝑘 = partial standard deviation for all flood peaks larger than 𝑍𝑍[k,𝑁𝑁]. 

The MGBT consists of two steps, i.e. sweeping outward and sweeping inward. Sweeping 

outward involves iterating starting at the median and progressing down to the smallest 

observation (Lamontagne et al., 2013; England Jr et al., 2019). Each observation, 𝑋𝑋[k,𝑁𝑁], is 

tested by comparing ω� [𝑘𝑘,𝑁𝑁] to a predetermined significance level (αout = 0.005). If ω� [𝑘𝑘,𝑁𝑁] < αout, 

then the observation is classified as a LO (Lamontagne et al., 2013; England Jr et al., 2019). 

Breaks in the data are identified using outward sweeping which implies the presence of several 

PILF’s (Lamontagne et al., 2013; England Jr et al., 2019). 

Sweeping inward involves iterating inward to the median starting with the smallest observation 

(Lamontagne et al., 2013; England Jr et al., 2019). Each observation, 𝑋𝑋[k,𝑁𝑁], is tested by 

comparing p(k:n), probability (p) of kth observation in data sample (N) to a significance level 

(αin = 0.10). If p(k:n) < αin, then the observation is classified as a LO (Lamontagne et al., 2013; 

England Jr et al., 2019). The value of the significance levels αout and αin are prescribed through 

extensive research, testing and evaluation by Lamontagne et al. (2013), Lamontagne et al. 

(2016) and Cohn et al. (2013). The MGBT is, however, prone to the mechanisms referred to 

as masking and swamping. Regarding masking, potential LOs may not be detected in the 

context of other small values which results in an under-detection of potential LOs (Cohn et al., 

2013; Lamontagne et al., 2016). Regarding swamping, the smallest observation may cause the 

second and subsequent small observations to be identified as outliers which results in an over-

detection of events as LOs (Cohn et al., 2013; Lamontagne et al., 2016). The prescribed 

significance value accounts for potential masking and swamping, however, these mechanisms 

may still occur. PILF’s which have been subjectively identified by hydrologists have also been 

successfully detected using the MGBT (Lamontagne et al., 2013; England Jr et al., 2019). 
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3.2.3 Chapter discussion and conclusion 

The use of data of sufficient quantity and quality from available networks may also increase 

the confidence of DRE and DFE and therefore enhance the value of information as understood 

by the public and private sectors (Van Bladeren et al., 2007). However, there is a decline of 

hydrological monitoring in SA (Pitman, 2011). The decline in rainfall monitoring networks has 

been shown to have severe impacts on water resource management such as the estimation of 

irrigation demands and losses from reservoirs and wetlands (Pitman, 2011), and the lack of 

overlapping data periods between observed and remotely sensed data is a concern (Hughes, 

2008). Gauge density is important to capture rainfall characteristics from spatially and 

temporally varying events (St‐Hilaire et al., 2003). Increased gauge density has improved 

simulated streamflow estimates, areal estimates of rainfall, MAP estimates and reduced under-

estimation of cumulative rainfall (Krajewski et al., 2003; St‐Hilaire et al., 2003; Bárdossy and 

Das, 2008; Xu et al., 2013). Dense rainfall gauge networks also provide meaningful data for 

ground truthing and calibrating satellite and lidar based remotely sensed data (Sun et al., 2000; 

Pegram et al., 2016). Xu et al. (2013) highlighted the importance of rainfall gauge location in 

estimating runoff and St‐Hilaire et al. (2003) concluded that the quality of data is further 

improved with well-located rainfall stations and not only by a denser network. 

Streamflow gauge network density is an important consideration in DFE due to possible 

information transfer from gauged to ungauged catchments (Hrachowitz et al., 2013). 

Lebecherel et al. (2016) confirmed the importance of streamflow gauge network density and 

showed a decrease in regionalisation efficiency when using a reduced gauged network density. 

Pool et al. (2019) further highlighted that spatial proximity of gauges within a relatively dense 

streamflow gauging network is an important consideration as it accounts for relevant attributes 

influencing hydrograph generation. 

Regarding record length, Boughton (2007) concluded that rainfall record length has an 

influence on estimated rainfall characteristics and on the performance of rainfall-runoff 

modelling. Dent et al. (1987) concluded that the minimum length of record required varies 

between regions. It is, however, important that an analyst uses a record length sufficiently long 

enough to cover quasi-periodic fluctuations irrespective of when the observations were 

recorded (Dyler and Tyson, 1977). Using rainfall datasets with shorter record lengths has 

resulted in over-estimated simulated streamflow and an increase in the errors of the model 

estimates (Boughton, 2007), however, these datasets are valuable for decision making in 
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ungauged catchments (Pool et al., 2019). The validity of the assumption of stationarity, 

irrespective of available record length and period of record in FFA, has been questioned (Zhang 

et al., 2001; Koutsoyiannis et al., 2009). Šraj et al. (2016) concluded that an unjustified 

assumption of stationarity in FFA could lead to an under-estimation of extreme floods, and 

furthermore, the detection of stationarity of streamflow data has an additional complexity in 

that streamflow discharges are dependent on climatic factors and other variables such as 

antecedent soil moisture which is difficult to predict under future conditions (Bezak et al., 

2015). 

Data screening and quality control are necessary to ensure reliable DFE and are a common 

practice as reported in the international literature, etc. in USA, Australia, UK and European 

countries. Guidelines for data screening and quality control for FFA includes the detection and 

treatment of outliers prior to FFA (England Jr et al., 2019). There are no prescribed guidelines 

for data screening and quality control of rainfall or streamflow data for regular practice in SA, 

apart from the standardised Z-Scores in outlier detection (Van der Spuy and Rademeyer, 2018) 

which has been shown to be problematic (Iglewicz and Hoaglin, 1993). 

Outliers are events which significantly depart from the trend of the remaining dataset 

(Lamontagne et al., 2013; Lamontagne et al., 2016; England Jr et al., 2019). LOs affect sample 

statistics resulting in biased parameter estimates (Asikoglu, 2017; England Jr et al., 2019) and 

a distortion of exceedance probabilities of large design events (Lamontagne et al., 2013; 

England Jr et al., 2019). HOs have a low probability of exceedance therefore providing 

valuable information in the estimation of design events (Costa and Jarrett, 2008; England Jr et 

al., 2019). With outlier detection being included in many international guidelines and with 

numerous available outlier detection methods, the performance of various methods under South 

African conditions needs to be investigated.  

It is thus necessary to assess the impact of outliers on DRE and DFE, and to assess the 

performance of outlier detection methods to determine if outlier detection should be 

recommended for regular practice in SA. In addition, the impact of a declining hydrological 

monitoring network, in terms of gauge density and record length on DRE and DFE, needs to 

be evaluated. This will aid in assessing if additional national resources should be directed 

towards maintaining and improving the hydrological monitoring network in SA.  
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3.3 STUDY AREA AND DATA COLLATION 

A total of six catchments in SA spanning three climatologically varying regions and having 

varying catchment areas were selected for use in this study. The climatologically varying 

regions are the Eastern Summer Coastal (ESC), Southern Winter Coastal (SWC) and Northern 

Interior (NI) which were used by Gericke (2015). ESC is within the eastern escarpment 

(Alexander, 2002) and is predominantly characterised with all year and/or summer rainfall 

(Gericke, 2015). NI is within the subtropical lowveld and highveld region (Alexander, 2002) 

and is characterised as a summer rainfall region (Gericke, 2015). SWC is within the 

Mediterranean region (Alexander, 2002) and is characterised as a winter rainfall region 

(Gericke, 2015). In this study, a catchment is defined as the watershed upstream of a streamflow 

gauge. Catchments were labelled according to the DWS (2011) flow-gauging station number 

located at the outlet of the catchment. Catchment Areas (A) varied between small (A ≤ 100 

km2), medium (100 km2 < A ≤ 1 000 km2) and large catchments (A > 1000 km2).  

Streamflow gauges used by Nathanael (2015) which were completely within the three 

climatologically varying regions were shortlisted. Thereafter, six streamflow gauges with 

record lengths of greater than 40 years and with no AMS records having missing or suspect 

flags were selected. Catchment boundaries for these six gauges were delineated using QGIS 

10.3.1. Table 3.1 provides a summary of attributes of the streamflow gauges used in this study.  

Table 3.1 Streamflow gauges and summary attributes 

Streamflow 
Gauge ID 

Gericke 
(2015) 
Climate 
Zone 

Record 
Length 
(Years) 

Area  
(km2) 

U2H013 ESC 46 295.70 

V2H004 ESC 40 269.13 

A2H012 NI 54 2579.65 

A6H011 NI 40 73.66 

G1H008 SWC 43 396.07 

H7H004 SWC 42 25.60 

 

Rainfall stations from the Lynch (2004) database was used in this study. A driver rainfall gauge 

within each catchment was selected based on record length (minimum of 40 years of unedited 
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observed data, i.e. no patching or infilling), MAP, altitude and proximity to the catchment 

centroid. The selected streamflow gauges and driver rainfall gauges within the climatologically 

varying regions are shown in Figure 3.7. Table 3.2 provides a summary of attributes of the 

driver rainfall gauges used in this study. Details of the selected streamflow gauges and 

corresponding driver rainfall gauges are provided in Table A.1 and Table A.2 in Appendix A. 
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Table 3.2 Driver rainfall gauges and associated attributes 

Rain 
Gauge  
Number 

Respective 
Streamflow 
Gauge ID 

Gericke 
(2015) 
Climate  
Zone 

Record  
Length 
(Years) 

0239097 U2H013 ESC 46 

0268640 V2H004 ESC 82 

0476031 A2H012 NI 49 

0589670 A6H011 NI 82 

0042227 G1H008 SWC 99 

0025414 H7H004 SWC 74 

 
The AMS extracted from rainfall and streamflow observed data were then screened for outlier 

events prior to further analysis using a simple visual inspection, i.e. a time series plot, and the 

standardised Z-Score test as detailed in Section 3.2.2.3. As an example, Figure 3.8 shows the 

AMS plot for driver Rainfall Gauge 0239097 with outliers identified using the standardised Z-

Score test. 

 
Figure 3.8 AMS plot for Driver Rainfall gauge 0239097 used in Catchment U2H013 

Events classified as outliers from both the visual inspection of the time series plot and 

standardised Z-Score method were then compared to observations from neighbouring gauges 

within the same year, assuming that these potential outlier events were caused by the same 

event. Events were then identified as outliers using the combination of time series plots, 
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standardised Z-Scores and the comparison to neighbouring gauges. A maximum of 2% of 

observations were identified as outliers within rainfall datasets throughout all study catchments 

and 3% within streamflow datasets. Identified outlier observations were removed from the 

AMS and it was thereafter assumed that no outlier events were present in the dataset. 

3.4 IMPACT OF OUTLIER EVENTS ON DESIGN RAINFALL AND FLOOD 

ESTIMATED USING DIFFERENT PROBABILITY DISTRIBUTIONS  

The impact of outlier events on DRE and DFE in SA are detailed in this section. This analysis 

was performed using at-site observed and synthetically generated annual maximum data series 

for selected PDs, as described in Section 3.4.1 and Section 3.4.2, respectively. A summary and 

conclusion for this section are provided in Section 3.4.3. A schematic of the structure of Section 

3.4 is shown in Figure 3.9. 

 
Figure 3.9 Schematic of the structure of Section 3.4 
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3.4.1 Use of observed data 

This section details the methodology, results, and discussion to assess the impact of outlier 

events on estimated DRE and DFE using observed datasets. 

3.4.1.1 Methodology 

The 1-, 2-, 5-, 10-, 20-, 50-, 100- and 200-year return period design rainfall and flood events 

were estimated by the GEV, Generalised Pareto (GPA), 3 parameter Kappa (Kappa), LN, and 

LP3 PDs from an initial observed AMS of rainfall and streamflow data. The initial observed 

AMS refers to observed data after data screening and pre-processing as detailed in Section 3.3. 

The evd (Stephenson, 2018), extRemes (Gilleland, 2018) and extraDistr (Wolodzko, 2018) 

packages were used in R-Studio to estimate design rainfall and floods. Linear Moments (L-

Moments) were chosen to estimate the required parameters due to its robust nature which 

provide an unbiased parameter estimation in the presence of outliers (Hosking and Wallis, 

1997; Rowinski et al., 2002). Version 2.6 of the lmom package was used to estimate L-

Moments within R-Studio (Hosking, 2017).  

The above PDs were chosen as: 

(a) Krasovskaia et al. (2001) advocates the use of the GPA and GEV PDs for DFE. 

(b) Görgens (2007) advocates the use of the GEV and LP3 PDs for DFE in SA. 

(c) Haile (2011) applied the GPA PD for DFE in SA. 

(d) The GEV, LP3, GPA and Gumbel Maximum PDs were found to be the best fit in the UK 

and Australia by Rahman et al. (2013). 

(e) The GEV PD is used in national guidelines in Malaysia and Indonesia (Zalina et al., 2002; 

Liu et al., 2015). 

(f) Kjeldsen et al. (2017) advocates the Kappa PD for regional FFA. 

(g) Van der Spuy and Rademeyer (2018) identified the LN, LP3 and GEV PDs as the suitable 

PDs for FFA in SA.  

(h) Rulfova et al. (2016) showed that the GEV PD is applicable for RFA. 

(i) The GEV PD was identified as the most appropriate for design rainfall estimation in SA 

(Smithers, 1996; Smithers and Schulze, 2000a; Smithers and Schulze, 2000b). 

(j) Calitz and Smithers (2020) concluded that the LP3 PD has the largest uncertainty bands in 

FFA with the GPA and GEV PD having the smallest uncertainty bands. Calitz and Smithers 

(2020) further advocated the use of the GPA PD for FFA on a national scale in SA.  
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Synthetically generated LOs and HOs were thereafter substituted into each of the initial 

observed rainfall and streamflow AMS dataset. The number of substituted synthetically 

generated outliers were based on three fractions of the AMS record length, i.e. equivalent to 

1%, 2% and 3% as shown in Table 3.3. A maximum substitution of 3% was chosen based on 

the maximum percentage of outliers identified from the initial observed AMS as detailed in 

Section 3.3. This substitution process was used to provide consistency in the study and to 

ensure that the initial observed AMS dataset length remained unchanged. 

Table 3.3 Number of generated synthetic outliers substituted in observed rainfall and 

streamflow AMS data 

  

Record 
Length  
(Year) 

Number of Substituted Outliers 

1% of AMS 2% of AMS 3% of AMS 

R
ai

nf
al

l G
au

ge
 ID

 0476031 49 0 1 2 
0589670 82 1 2 3 
0042227 99 1 2 3 
0025414 74 1 1 2 
0239097 85 1 2 3 
0268640 82 1 2 3 

St
re

am
flo

w
 

G
au

ge
 ID

 

A2H012 54 0 1 2 
A6H011 40 0 1 2 
G1H008 43 0 1 2 
H7H004 42 0 1 2 
U2H013 46 0 1 2 
V2H004 40 0 1 2 

The magnitude of the synthetically generated LOs were calculated as fractions, i.e. 1%, 2% 

and 3%, of the estimated 1-year return period event and as multiples, i.e. 150%, 160% and 

170%, of the 100-year return period event for synthetically generated HOs. The outlier 

scenarios are explained in   
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Table 3.4, and an example of the substitution process is provided in Table 3.5. The 2-, 5-, 10-, 

20-, 50-, 100- and 200-year return period rainfall and flood events were estimated by the GEV, 

GPA, Kappa, LN and LP3 PDs with observed data containing LOs and HOs, and thereafter 

compared to design events estimated from datasets without substituted outliers.  
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Table 3.4 Outlier substitution process and scenarios when using observed data 

 
Table 3.5 Example of the outlier substitution process at Rainfall Gauge 0042227 

Rank Input 
(mm) 

Obs.L1 
(mm) 

Obs.L2 
(mm) 

Obs.L3 
(mm) 

Obs.H1 
(mm) 

Obs.H2 
(mm) 

Obs.H3 
(mm) 

1 4.50 0.33* 0.33* 0.33* 4.50 4.50 4.50 
2 22.50 22.50 0.65* 0.65* 22.50 22.50 22.50 
3 22.90 22.90 22.90 0.98* 22.90 22.90 22.90 
4 23.90 23.90 23.90 23.90 23.90 23.90 23.90 
…..        
96 83.50 83.50 83.50 83.50 83.50 83.50 83.50 
97 83.80 83.80 83.80 83.80 83.80 83.80 119.79* 
98 84.00 84.00 84.00 84.00 84.00 119.79* 127.78* 
99 88.00 88.00 88.00 88.00 119.79* 127.78* 135.77* 

* Substituted synthetic outliers 

It was assumed that the initial observed AMS resulted in the most accurate and representative 

design events compared to events estimated with substituted outliers. In addition, it was 

assumed that all the selected PDs were appropriate to use in all initial observed AMS and AMS 

Dataset Type Scenario ID Explanation 

Observed 
Datasets with 
LOs 

Obs.L1 
All observations ≤ 1st percentile value in 
observed AMS are substituted by synthetic LOs 
equivalent to 1% of the AMS (Table 3.3) 

Obs.L2 
All observations ≤ 2nd percentile value in 
observed AMS are substituted by synthetic LOs 
equivalent to 2% of the AMS (Table 3.3) 

Obs.L3 
All observations ≤ 3rd percentile value in 
observed AMS are substituted by synthetic LOs 
equivalent to 3% of the AMS (Table 3.3) 

Observed 
Datasets with 
HOs 

Obs.H1 
All observations ≥ 99th percentile value in 
observed AMS are substituted by synthetic HOs 
equivalent to 1% of the AMS (Table 3.3) 

Obs.H2 
All observations ≥ 98th percentile value in 
observed AMS are substituted by synthetic HOs 
equivalent to 2% of the AMS (Table 3.3) 

Obs.H3 
All observations ≥ 97th percentile value in 
observed AMS are substituted by synthetic HOs 
equivalent to 3% of the AMS (Table 3.3) 
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with substituted outliers. It was also assumed that substituted outlier events belonged to the 

respective sample dataset populations. It is acknowledged that any uncertainties in the initial 

observed data have not been taken into consideration, and a violation of the assumption that all 

the selected PDs fitted the initial observed data will result in inherent errors in the estimated 

design events. 

Four statistics were computed to assess the impact of outliers, i.e. Mean Relative Differences 

(MRD), Mean Absolute Relative Differences (MARD), Nash Sutcliffe Efficiency (NSE) and 

Percent Bias (PBIAS). Relative Differences (RD) were calculated using Equation 3.7. MRD 

were calculated as the arithmetic mean of the RD across all return periods per catchment and 

PDs. A positive RD indicates an over-estimation of design events from datasets with substituted 

outliers and the converse is true for a negative RD. MARD was calculated as the arithmetic 

mean of the absolute RD across all return periods per catchment and PDs.  

𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.= [𝐸𝐸 𝑆𝑆𝑆𝑆,𝑃𝑃𝑃𝑃,𝑇𝑇,𝐷𝐷− 𝐸𝐸0,𝑃𝑃𝑃𝑃,𝑇𝑇,𝐷𝐷]
𝐸𝐸0,𝑃𝑃𝑃𝑃,𝑇𝑇,𝐷𝐷

 ×  100                [3.7]  

where: 

𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.= RD calculated between design rainfall or flood events estimated using a 
dataset scenario (Obs.L1 to Obs.H3) with outliers and the initial observed 
dataset (%), 

𝐸𝐸𝑆𝑆𝑆𝑆 = design rainfall or flood estimate from Obs.L1 to Obs.H3 (mm or m3.s-1), 

PD = probability distributions (GEV, GPA, Kappa LN and LP3), 

T = return period (2-, 5-, 10-, 20-, 50-, 100- and 200-year), 

D = data type (observed or synthetic), and 

𝐸𝐸0 = rainfall or flood estimated from initial observed dataset (mm or m3.s-1). 

The NSE (Nash and Sutcliffe, 1970) calculated using Equation 3.8 quantifies the fit of 

estimated design events from an outlier scenario against the 1:1 line which represents a perfect 

fit scenario. NSE values range from negative infinity to 1, with NSE = 1 representing a perfect 

fit against the 1:1 line. NSE values are categorised as follows: 0.75 < NSE ≤ 1.0 indicates a 

very good fit against the 1:1 line, 0.65 < NSE ≤ 0.75 indicates a good fit, 0.50 < NSE ≤ 0.65 

indicates a satisfactory fit, and NSE ≤ 0.5 indicates an unsatisfactory fit (Santhi et al., 2001; 

Lim et al., 2006; Moriasi et al., 2007; Parajuli et al., 2009).  
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NSE  = �1 −
∑ �𝐸𝐸0,𝑃𝑃𝑃𝑃,𝑇𝑇,𝐷𝐷−𝐸𝐸𝑆𝑆𝑖𝑖,𝑃𝑃𝑃𝑃,𝑇𝑇,𝐷𝐷�

27
𝑇𝑇=1

∑ (𝐸𝐸0,𝑃𝑃𝑃𝑃,𝑇𝑇,𝐷𝐷−𝐸𝐸�𝐷𝐷)27
𝑇𝑇=1

�                [3.8] 

where: 

NSE = statistic quantifying the fit of estimated design events against the 1:1 line, 

and 

Ē     = average rainfall or flood from initial observed dataset (mm or m3.s-1). 

PBIAS calculated using Equation 3.9 indicates if design events from a scenario are constantly 

over- or under-estimated. A positive PBIAS value indicates an over-estimation whereas a 

negative PBIAS value indicates an under-estimation. PBIAS values are categorized as: PBIAS 

< ± 10% indicates a very good fit between estimated events, ± 10% < PBIAS ≤ ± 15% indicates 

a good fit, ± 15% < PBIAS ± ≤ 25% indicates a satisfactory fit and PBIAS > 25% indicates an 

unsatisfactory fit (Van Liew et al., 2003; Singh et al., 2004; Moriasi et al., 2007; Archibald et 

al., 2014).  

PBIAS = ∑ �
�𝐸𝐸𝑆𝑆𝑖𝑖,𝑃𝑃𝑃𝑃,𝑇𝑇,𝐷𝐷− 𝐸𝐸0,𝑃𝑃𝑃𝑃,𝑇𝑇,𝐷𝐷�×100

𝐸𝐸0,𝑃𝑃𝑃𝑃,𝑇𝑇,𝐷𝐷
�7

𝑇𝑇=1                [3.9] 

The following two assessments were performed to evaluate the impact of outliers: 

(a) Detailed assessment: Statistics (MRD, MARD, NSE and PBIAS) were computed per 

scenario (Obs.L1 to Obs.H3) and for each PD for each catchment. This was to highlight the 

impact of outliers on design estimates per scenario within each catchment. 

(b) Summative assessment: Computed statistics from the detailed assessment were averaged 

across scenarios with LOs (Obs.L1, Obs.L2 and Obs.L3) and across scenarios with HOs 

(Obs.H1, Obs.H2 and Obs.H3) per PD for each catchment and thereafter averaged across 

all catchments. This provides an indication of the overall impact of LOs and HOs on DRE 

and DFE.  

Design rainfall results are provided in Section 3.4.1.2 with design floods in Section 3.4.1.3. 

3.4.1.2 Design rainfall 

As an example, results for the detailed assessment for Rainfall Gauge 0042227 are presented 

in Section 3.4.1.2.1 with results for all rainfall gauges using observed data provided in Figure 

B1.1 to Figure B1.5 in Appendix B1. Results from the summative assessment are provided in 

Section 3.4.1.2.2. Results from the detailed assessment are used to inform the summative 



Impacts of Floods and Data Availability, Data Quality and Data Screening on the Estimation of Design Floods 

 

50 

assessment, therefore a discussion of all the results from the detailed assessment are not 

provided. For ease of reference, the four computed statistics used in the detailed assessment 

are referred to as MRD, MARD, NSE and PBIAS whereas the four computed statistics used in 

the summative assessment are referred to as Avg.s MRD, Avg.s MARD, Avg.s NSE and Avg.s 

PBIAS. 

3.4.1.2.1 Detailed assessment 

As evident in Figure 3.10, design rainfall events are over-estimated in the presence of LOs 

when estimated by the LN PD as indicated by positive MRD and PBIAS values and under-

estimated by the GEV, GPA and LP3 PDs as indicated by negative MRD and PBIAS values.  

 
Figure 3.10 MRD and PBIAS for design rainfall events estimated using observed data 

for Rain Gauge 0042227 for LO (Obs.L1, Obs.L2 and Obs.L3) and HO 

(Obs.H1, Obs.H2 and Obs.H3) scenarios 

It is indicated by the MARD and NSE values, as shown in Figure 3.11, and MRD and PBIAS 

values, as shown in Figure 3.10, that events estimated by the LN PD are the most impacted in 

the presence of all LO scenarios. Design rainfall events estimated by the GEV and GPA PDs 

are impacted the least in the presence of LOs as indicated by the smallest MARD and largest 

NSE (Figure 3.11), and smallest MRD and PBIAS values (Figure 3.10). There is an increased 

impact on design rainfall estimates with an increased presence of LOs especially for events 

estimated by the LN and LP3 PDs as indicated by the MARD and NSE values (Figure 3.11) and 

MRD and PBIAS values (Figure 3.10). Observed rainfall for Rainfall Gauges 0268640, 

0042227, 0025414 and the streamflow gauge at Catchment V2H004 were unable to be fitted 
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to the Kappa PD as estimated parameters were not consistent with the Kappa PD due to a 

violation of the defined parameter space (Hosking and Wallis, 1997). 

 
Figure 3.11 MARD and NSE for design rainfall events estimated using observed data 

for Rainfall Gauge 0042227 for LO (Obs.L1, Obs.L2 and Obs.L3) and HO 

(Obs.H1,Obs.H2 and Obs.H3) scenarios 

The presence of HOs results in an over-estimation of design rainfall events across all PDs for 

Rainfall Gauge 0042227 as indicated by a positive MRD and PBIAS value as shown in Figure 

3.10. Design rainfall events estimated by the GEV PD are the most impacted by the presence 

of HOs as indicated with the largest MARD and smallest NSE (Figure 3.11), and by the largest 

MRD and PBIAS (Figure 3.10). Design events estimated by the LN PD are least impacted by 

HOs as indicated by the smallest MARD and largest NSE (Figure 3.11), and by the smallest 

MRD and PBIAS (Figure 3.10). 

3.4.1.2.2 Summative assessment  

For the summative assessment, computed statistics were averaged across LO scenarios and 

across scenarios with HOs per PD for each catchment and thereafter averaged across all 

catchments to obtain averaged values, i.e. Avg.s MRD, Avg.s MARD, Avg.s NSE and Avg.s 

PBIAS.  

Identical trends observed from the detailed assessment for Rainfall Gauge 0042227 are 

reflected in the summative assessment for LO and HO scenarios. Design rainfall events are 

generally over-estimated by the LN PD in the presence of LOs as indicated by a positive Avg.s 

MRD and Avg.s. PBIAS value as shown in Figure 3.12. Design rainfall events are generally 
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under-estimated by the GEV, GPA and LP3 PDs in the presence of LOs as indicated by the 

negative Avg.s MRD and Avg.s PBIAS values as shown in Figure 3.12. It is further noted that 

events estimated by the LP3 PD are most under-estimated in the presence of LOs as indicated 

by the largest Avg.s MRD values as shown in Figure 3.12. 

 
Figure 3.12 Avg.s MRD and Avg.s PBIAS for design rainfall events estimated using 

observed data with LOs and HOs 

Design rainfall events estimated by the LN PD are the most impacted, i.e. by up to 22% across 

catchments in the presence of LOs as indicated by the largest Avg.s MARD value and the 

smallest Avg.s NSE value as shown in Figure 3.13, and the largest Avg.s MRD and Avg.s PBIAS 

as shown in Figure 3.12. Design estimates by the GEV and GPA PDs were the least impacted 

to LOs, i.e. by to 3% across catchments as indicated by the smallest Avg.s MARD value and the 

largest Avg.s NSE value (Figure 3.13), and by the smallest Avg.s MRD and Avg.s PBIAS (Figure 

3.12). Based on the computed Avg.s NSE value (Avg.s NSE < 0.5), design rainfall events with 

LOs estimated by the LN and LP3 PDs are classified as unsatisfactory.  
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Figure 3.13 Avg.s MARD and Avg.s NSE for design rainfall events estimated using 

observed data with LOs and HOs 

Design rainfall events are generally over-estimated by all PDs across catchments in the 

presence of HOs as indicated by the positive Avg.s MRD and Avg.s PBIAS values as shown in 

Figure 3.12. Design rainfall events estimated by the GEV PD are the most impacted, i.e. by up 

to 16% across catchments in the presence of HOs across catchments as indicated by the Avg.s 

MARD and the smallest Avg.s NSE values as shown in Figure 3.13, and by the largest Avg.s 

MRD and Avg.s PBIAS as shown in Figure 3.12. Design estimates by the LN PD are the least 

impacted, i.e. by up to 6% across catchments in the presence of HOs across catchments as 

indicated by the Avg.s MARD. Estimated design rainfall by the GEV, GPA and LP3 PDs in the 

presence of HOs are classified by Avg.s NSE values (< 0.5), as shown in Figure 3.13, as 

unsatisfactory.  

3.4.1.3 Design floods 

MRD, MARD, PBIAS and NSE results for the detailed assessment (cf. Section 3.4.1.1) for all 

catchments are provided in Figure B1.6 to Figure B1.11 in Appendix B1. Results for the 

summative assessment on design floods estimated using observed data are provided in this 

section.  

Design floods are generally over-estimated in the presence of LOs by the LN PD as indicated 

by a positive Avg.s MRD and Avg.s PBIAS value, and under-estimated by the GEV, GPA and 

LP3 PDs as indicated by a negative Avg.s MRD and Avg.s PBIAS value as shown in Figure 3.14. 
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Figure 3.14 Avg.s MRD and Avg.s PBIAS between design flood events estimated using 

observed data with LOs and HOs 

Design floods estimated by the GEV and GPA PDs are the least impacted to LOs, i.e. by up to 

2% across catchments as indicated by Avg.s MARD values and by Avg.s NSE values which are 

close to 1 as shown in Figure 3.15, and by the smallest Avg.s MRD and Avg.s PBIAS as shown 

in Figure 3.14. Floods estimated by the LN PD are most impacted to LOs, i.e. by up to 45% 

across catchments as indicated by Avg.s MARD values and Avg.s NSE (< -0.5) as shown in 

Figure 3.15, and by the largest Avg.s MRD and Avg.s PBIAS, as shown in Figure 3.14. 

Furthermore, estimated design floods by the LN and LP3 PDs in the presence of LOs are 

classified as unsatisfactory by Avg.s PBIAS (> ±25%) and Avg.s NSE (< 0.5), as shown in Figure 

3.14 and Figure 3.15 respectively. 

 
Figure 3.15 Avg.s MARD and Avg.s NSE for design flood events estimated using 

observed data with LOs and HOs 
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Design floods are generally over-estimated by all PDs in the presence of HOs across all 

catchments as indicated by the positive Avg.s MRD and Avg.s PBIAS values as shown in Figure 

3.14. Design floods estimated by the LN PD are the least impacted by HOs, i.e. by up to 22% 

across all catchments as indicated with the smallest Avg.s MARD values and by the largest Avg.s 

NSE value (0.69) as shown in Figure 3.15, and by the smallest Avg.s MRD and Avg.s PBIAS 

values, as shown in Figure 3.14, respectively. Design floods estimated using the GEV PD are 

the most impacted by HOs, i.e. by up to 46% across catchments as indicated by the largest 

Avg.s MARD values and smallest Avg.s NSE, and the largest Avg.s MRD and Avg.s PBIAS values, 

as shown in Figure 3.14 and Figure 3.15, respectively. 

3.4.1.4 Summary of results 

Identical trends were obtained between the detailed assessment for design rainfall at Rainfall 

Gauge 0042227 and the summative assessment when using observed data and are summarised 

as follows: 

(a) Design rainfall and flood events estimated by the GPA and GEV PDs are the least impacted 

by LOs, i.e. by up to 3% for design rainfall and 2% for design floods across catchments. 

(b) Design rainfall and flood events estimated by the LN PD are the most impacted by LOs, 

i.e. by up to 22% for design rainfall and 45% for design floods across catchments. 

(c) Design events estimated by the GEV PD are the most impacted by HOs, i.e. by up to 16% 

for design rainfall and 46% for design floods across catchments.  

(d) Design events estimated by the LN PD are the least impacted by HOs, i.e. by up to 6% for 

design rainfall and 22% for design floods across catchments. 

3.4.2 Use of synthetically generated data series 

The actual PD of each observed dataset is not known, therefore the analysis on observed data 

may be biased for or against a particular PD. Synthetic datasets were then generated to improve 

confidence of the analysis by creating AMS datasets from a defined PD. Synthetic datasets 

were only generated for the GEV and GPA PD as these were advocated as the most appropriate 

for national scale use in South Africa, as highlighted in Section 3.4.1.1. A detailed methodology 

and results on the application of synthetically generated annual maximum data series to assess 

the impact of LO and HO events on design rainfall and flood estimates are provided in Section 

3.4.2.1, Section 3.4.2.2 and Section 3.4.2.3. 
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3.4.2.1 Methodology 

A total of 100 AMS each having 100 observations were synthetically generated for both the 

GEV and GPA PDs using R-Statistical software (Gilleland, 2018; Stephenson, 2018; 

Wolodzko, 2018), as detailed in Section 3.4.1.1, and statistics calculated of the observed 

rainfall and streamflow AMS after being screened for outliers, as detailed in Section 3.3. 

Generated AMS datasets were thereafter screened for outliers by using the standardised Z-

Score method and identified outliers were then removed. Design rainfall and flood values were 

computed by the GEV and GPA PDs for the 1-, 2-, 5-, 10-, 20-, 50-, 100- and 200-year return 

period event on each of the 100 AMS which had no outliers. Thereafter, synthetic LOs and 

HOs were generated and substituted as detailed in Section 3.4.1.1 to each of the 100 

synthetically generated AMS creating scenarios Syn.L1, Syn.L2 and Syn.L3 which represent all 

observations ≤ 1st, 2nd and 3rd percentile values in synthetic AMS respectively, and Syn.H1, 

Syn.H2 and Syn.H3 which represent all observations ≥ 99th, 98th and 97th percentile values in 

synthetic AMS respectively.  

Design rainfall and floods were then estimated for each scenario dataset from the 100 

synthetically generated AMS. A comparison was thereafter made between design events 

estimated with and without substituted outliers. MRD, MARD, NSE and PBIAS detailed in 

Section 3.4.1.1 were calculated for each scenario dataset from the 100 synthetically generated 

data series and used to assess the impact of design events to the presence of LOs and HOs.  

It was assumed that the substituted outlier events belonged to the respective PDs used to 

generate the sample datasets. It is acknowledged that any uncertainties in each synthetically 

generated data series, and variations between observed and synthetically generated data series 

have not been taken into consideration. As an example, the Probability Density Function (PDF) 

and Cumulative Distribution Function (CDF) for the observed and 100 synthetically generated 

rainfall data series using the GEV PD at Rainfall Gauge 0268640 are shown in Figure 3.16 and 

Figure 3.17 respectively, to highlight the variations between observed and synthetically 

generated data series.  
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Figure 3.16 PDF for the observed and 100 synthetically generated rainfall data series at 

Rain Gauge 0268640 

 
Figure 3.17 CDF for the observed and 100 synthetically generated rainfall data series at 

Rain Gauge 0268640 

The detailed and summative assessments as described in Section 3.4.1.1 were performed on 

design rainfall and flood events which are in Section 3.4.2.2 and Section 3.4.2.3 respectively. 
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3.4.2.2 Design rainfall 

For the detailed assessment, MRD, MARD, NSE and PBIAS were calculated for each scenario 

dataset from the 100 synthetically generated data series and then an average (Avg.d) across all 

100 synthetically generated series per scenario were calculated. Results for the detailed 

assessment for all rainfall gauges when using synthetically generated data series are provided 

in Figure B2.1 to Figure B2.6 in Appendix B2. Design rainfall results for the summative 

assessment are provided in this section. Results from the detailed assessment are used to inform 

the summative assessment, therefore a discussion of all the results from the detailed assessment 

are not provided here.  

For the summative assessment, results for the computed statistics were averaged across LO 

scenarios, i.e. Syn.L1, Syn.L2 and Syn.L3 and across HO scenarios, i.e. Syn.H1, Syn.H2 and 

Syn.H3 per PD for each rainfall gauge and thereafter averaged across all rainfall gauges to 

obtain Avg.s MRD, Avg.s MARD, Avg.s NSE and Avg.s PBIAS. Design rainfall events estimated 

by the GEV and GPA PDs are generally under-estimated by up to 2% in the presence of LOs 

as indicated by negative Avg.s MRD and Avg.s PBIAS, as shown in Figure 3.18. 

 
Figure 3.18 Avg.s MRD and Avg.s PBIAS for design rainfall events estimated using 

synthetically generated data with LOs and HOs 
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Figure 3.19 Avg.s MARD and Avg.s NSE for design rainfall events estimated using 

synthetically generated data with LOs and HOs 

Events estimated by the GEV and GPA PDs are impacted by up to 2% across catchments in 

the presence of LOs as indicated by Avg.s MARD shown in Figure 3.19. Furthermore, 

acceptable design events are estimated in the presence of LOs from both the GEV and GPA 

PDs as indicated by Avg.s PBIAS values (< 10%) and Avg.s NSE values (> 0.75), as shown in 

Figure 3.18 and Figure 3.19 respectively. 

Rainfall events estimated by the GEV and GPA PDs are over-estimated in the presence of HOs 

as indicated by positive Avg.s MRD and Avg.s PBIAS values, as shown in Figure 3.18. Rainfall 

events are impacted by up to 12% in the presence HOs across catchments indicated by Avg.s 

MARD values shown in Figure 3.19, with events estimated from the GEV PD being more 

impacted than estimated events using the GPA PD indicated by larger Avg.s MARD and smaller 

Avg.s NSE values, as shown in Figure 3.19, and by larger positive Avg.s MRD and Avg.s PBIAS 

values as shown in Figure 3.18. 

3.4.2.3 Design floods 

Computed Avg.d MRD, Avg.d MARD, Avg.d PBIAS and Avg.d NSE for the detailed assessment 

in all catchments are provided in Figure B2.7 to Figure B2.12 in Appendix B2. Results for the 

summative assessment on design floods estimated using synthetically generated data series are 

provided in this section.  

Design floods are under-estimated from both GEV and GPA PDs in the presence of LOs as 

indicated by negative Avg.s MRD and Avg.s PBIAS values as shown in Figure 3.20. Flood events 
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estimated by the GEV and GPA PDs are impacted by up to 1% across catchments in the 

presence of LOs as indicated by Avg.s MARD as shown in Figure 3.21. Estimated flood events 

are classified as acceptable by Avg.s PBIAS (< -10%) and Avg.s NSE (> 0,75) as shown in Figure 

3.20 and Figure 3.21 respectively. 

 
Figure 3.20 Avg.s MRD and Avg.s PBIAS for design flood events estimated using 

synthetically generated data with LOs and HOs 

 
Figure 3.21 Avg.s MARD and Avg.s NSE for design flood events estimated using 

synthetically generated data with LOs and HOs 

Design flood events are over-estimated in the presence of HOs by the GEV and GPA PDs with 

estimates from the GEV PD being impacted by up to 13% across catchments whereas estimates 

from the GPA PD are impacted by up to 12% as indicated by Avg.s MARD, The greater impact 

of floods estimated by the GEV PD in the presence of HOs compared to estimates by the GPA 
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PD are also indicated by smaller Avg.s NSE values as indicated in Figure 3.21, and by larger 

Avg.s MRD and Avg.s PBIAS as shown in Figure 3.20. 

3.4.2.4 Summary of results 

The following trends are summarised for design rainfall and flood events estimated with 

synthetically generated data series: 

(a) Design rainfall events estimated by the GEV and GPA PDs are impacted by up to 2% in 

the presence of LOs across catchments and design floods are impacted by up to 1%.  

(b) Design rainfall and flood, events estimated by the GEV and GPA PDs in the presence of 

HOs, are impacted by up to 12% and 13% respectively across catchments.  

3.4.3 Summary and conclusions 

The impact of outlier events on DRE and DFE were assessed using both at-site observed AMS 

data and synthetically generated AMS for selected PDs. Synthetic datasets were generated to 

improve confidence in the analysis by creating AMS datasets from a defined PD, i.e. to ensure 

that the fitted PD is the correct PD for the dataset. The GEV, GPA, Kappa, LN and LP3 PDs 

were used in analysing observed datasets, whereas only the GEV and GPA PD were used in 

analysing synthetically generated datasets. Synthetic LO and HO events were calculated and 

substituted into the each observed and each of the 100 synthetically generated AMS per rainfall 

gauge and streamflow gauge which created six dataset scenarios of outliers. The 2-, 5-, 10-, 

20-, 50-, 100- and 200-year return period design rainfall and flood events were estimated from 

observed data and synthetically generated data series with and without synthetic outliers. 

Comparisons between estimated design rainfall and floods with and without substituted outliers 

were undertaken.  

From the analysis of observed datasets, design events estimated by the LN PD are the most 

impacted by LOs, i.e. by up to 22% for design rainfall and 45% for design floods across 

catchments, and the least impacted by HOs, i.e. by up to 6% for design rainfall and 22% for 

design floods across catchments. Design events estimated by the GEV and GPA PDs are the 

least impacted by LOs, i.e. by up to 3% for design rainfall and 2% for design floods across 

catchments, and the most impacted by HOs, i.e. by up to 16% for design rainfall and 46% for 

design floods across catchments. 
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Regarding the analysis of synthetically generated data series, design rainfall events estimated 

by the GEV and GPA PDs are impacted by up to 2% in the presence of LOs across catchments 

and up to 1% for design flood events. Design rainfall and flood events estimated by the GEV 

and GPA PDs in the presence of HOs are impacted by up to 12% and 13% respectively across 

catchments. The difference in results between using observed and synthetically generated 

datasets may be a result of the incorrect PD being applied on the observed datasets. 

For both practice and research purposes, the impact of outlier events is highlighted in this study, 

which indicates that outlier events must not be ignored in DRE and DFE, and caution needs to 

be taken when applying the Kappa, LN and GEV PDs for DRE and DFE in SA due to the 

impact of outliers when using these PDs. Within practice, the presence of LOs generally results 

in an under-estimation of design rainfall and floods thereby reducing the accuracy of 

infrastructural design which increases the risk of failure and increases risk to the safety of lives 

and severe economic, environmental, and social consequences. The presence of HOs generally 

results in an over-estimation of design rainfall and floods thereby resulting in an over-design 

of infrastructure which provides a conservative approach; however, the economic viability of 

the design may be questioned. The LN and GEV PD are most impacted by LOs and HOs 

respectively, therefore special care should be taken in their application.  

It is recommended from results in this study that LOs be excluded and HOs should not be 

excluded from DRE and DFE in SA after such events have been verified against events from 

neighboring stations. LOs should be excluded from DRE and DFE as these events affect the 

estimation of sample statistics resulting in biased parameter estimates (Asikoglu, 2017; 

England Jr et al., 2019) and a distortion of exceedance probabilities of large design events 

(Lamontagne et al., 2013; England Jr et al., 2019). HOs should not be excluded because these 

events have a low probability of exceedance therefore providing valuable information in the 

estimation of design events (Costa and Jarrett, 2008; England Jr et al., 2019). Judgement from 

the analyst is ultimately required on whether to include or exclude HOs from further analysis, 

as also recommended by England Jr et al. (2019. It is recommended from results in this study 

that special caution be taken when applying the Kappa, LN, LP3 and GEV PDs for DRE and 

DFE in SA due to the impact of outliers when using these PDs. It is also recommended that 

this study be expanded to other regions in SA to have more confidence in the findings and 

thereafter be used in a South African national guideline. 
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3.5 PERFORMANCE OF OUTLIER DETECTION METHODS 

The performance of the BP, MZS and MGBT outlier detection methods (cf. Section 3.2.2.3) in 

detecting substituted outliers on observed data and synthetically generated rainfall and 

streamflow AMS records are detailed in Section 3.5.1 and Section 3.5.2 respectively. A 

schematic of the structure of Section 3.5 is shown in Figure 3.22. 

 
Figure 3.22 Schematic of the structure of Section 3.5 

3.5.1 Use of observed data 

The applied method, results and summary of results on the performance of outlier detection 

methods on observed rainfall are provided in and flow data are provided in Section 3.5.1.1, 

Section 3.5.1.2, Section 3.5.1.3, and Section 3.5.1.4, respectively. 

3.5.1.1 Methodology 

Outlier events were generated and substituted within observed rainfall and streamflow data 

creating six scenarios, i.e. Obs.L1, Obs.L2, Obs.L3, Obs.H1, Obs.H2 and Obs.H3 (cf. Section 

3.4.1.1). The BP and MZS were applied to detect both LO and HO events in data from each 

rainfall and streamflow gauge for all scenarios. The MGBT was applied in R-Studio by the 

MGBT package (Asquith et al., 2018) with default parameters for LO scenarios as it is only 
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designed to detect LOs. It was assumed that detected outlier events by each outlier detection 

method are true outlier events within each sample dataset.  

The following two assessments were conducted to evaluate the performance of outlier detection 

methods on observed data: 

(a) Detailed assessment: Draws a comparison between the percentage of outliers substituted 

and detected within each scenario across all rainfall and streamflow gauges. 

(b) Summative assessment: Average Substituted (Avg. Sub) and Average Detected (Avg. Det) 

outliers were calculated across Obs.L1, Obs.L2 and Obs.L3 and across Obs.H1, Obs.H2 

and Obs.H3 for each rainfall and streamflow gauge, and thereafter averaged across all 

rainfall and streamflow gauges. RD were then calculated between Avg. Sub and Avg. Det 

using Equation 3.10 to provide a RD of Avg. detection (%). A positive RD indicates over-

detection whereas a negative RD indicates an under-detection. 

𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑.𝑜𝑜𝑜𝑜𝑜𝑜 = [𝐴𝐴𝐴𝐴𝐴𝐴.𝐷𝐷𝐷𝐷𝐷𝐷𝑂𝑂,𝐷𝐷−𝐴𝐴𝐴𝐴𝐴𝐴.𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂,𝐷𝐷]
𝐴𝐴𝐴𝐴𝐴𝐴.𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂,𝐷𝐷

 ×  100             [3.10]  

where: 

𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑.𝑜𝑜𝑜𝑜𝑜𝑜 = RD of Avg. detection on observed data series (%), 

Avg.Det = Average detected outliers (%), 

O  = Outlier type (low or high),  

D  = Data type (rainfall or streamflow), and 

Avg.Sub = Average substituted outliers (%). 

The performance of outlier detection methods on observed rainfall data are provided in Section 

3.5.1.2 and for streamflow data in Section 3.5.1.3. 

3.5.1.2 Rainfall 

Results for the detailed assessment is first presented in Section 3.5.1.2.1 followed by the 

summative assessment in Section 3.5.1.2.2. 

3.5.1.2.1 Detailed assessment 

As shown in Figure 3.23, the performance of the BP method in detecting outliers varies across 

all scenarios and rainfall gauges. There are more LOs detected than substituted for scenarios 

Obs.L1, Obs.L2 and Obs.L3 for Rainfall Gauges 0476031, 0589670, 0239097 and 0268640 
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with an equal number of substituted and detected outliers in Rainfall Gauge 0042227, and no 

outliers detected for Rainfall Gauge 0025414. For scenarios Obs.H1, Obs.H2 and Obs.H3, 

there are generally more HOs detected than substituted across all rainfall gauges except for 

Obs.H3 at Rainfall Gauge 0239097, as shown in Figure 3.23.  

 
Figure 3.23 Percentage of substituted and detected outliers using the BP method on 

observed rainfall data with LO (Obs.L1, Obs.L2 and Obs.L3) and HO 

(Obs.H1, Obs.H2 and Obs.H3) scenarios 

As shown in Figure 3.24, the MZS method was unable to detect any substituted LOs across all 

LO scenarios and rainfall gauges as shown in Figure 3.24. No HOs were detected for Rainfall 

Gauge 0042227 and 0268640 with an over-detection at Rainfall Gauge 0589670 and 0025414 

and under-detection in Rainfall Gauge 0239097 across all HO scenarios.  

 
Figure 3.24 Percentage of substituted and detected outliers using the MZS method on 

observed rainfall data with LO (Obs.L1, Obs.L2 and Obs.L3) and HO 

(Obs.H1, Obs.H2 and Obs.H3) scenarios 
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The MGBT performed well in detecting the correct number of substituted outliers across all 

rainfall gauges for all LO scenarios except for Obs.L2 at Rainfall Gauge 0476031 and Obs.L3 

at Rainfall Gauge 0025414 at which outliers were under-detected as shown in Figure 3.25. 

 
Figure 3.25 Percentage of substituted and detected outliers using the MGBT on 

observed rainfall data with LO (Obs.L1, Obs.L2 and Obs.L3) scenarios 

3.5.1.2.2 Summative assessment 

The MZS and MGBT generally under-detects LOs by up to 100% and 6% respectively as 

indicated by negative RD value, as shown in Figure 3.26. The BP generally over-detects LOs 

up to 15% as shown in Figure 3.26. HOs are generally over-detected by the MZS and BP 

methods with the BP over-detecting up to 150% compared to an over-detection of up to 50% 

by the MZS as indicated by positive RD values as shown in Figure 3.26.  

 
Figure 3.26 RD of Avg. Detection of LOs and HOs in observed rainfall data using the 

BP, MZS and MGBT 
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3.5.1.3 Streamflow 

Results for the detailed assessment on observed streamflow data series are provided in Figure 

C.1 to Figure C.3 in Appendix C. Results for the summative assessment are provided in this 

section. LOs within observed streamflow data are under-detected by up to 100% by the MZS 

and BP methods and by up to 30% by the MGBT indicated by negative RD values as shown in 

Figure 3.27. There is a greater over-detection of HOs by the BP method compared to the MZS 

as HOs are over-detected by up to 300% from the BP method and by up to 100% from the MZS 

method as indicated by positive RD values, as shown in Figure 3.27.  

 
Figure 3.27 RD of Avg. Detection of LOs and HOs in observed streamflow data using 

the BP, MZS and MGBT 

3.5.1.4 Summary of results 

The following list summarises the performance of outlier detection methods when using 

observed rainfall and streamflow data: 

(a) The MGBT performs the best in detecting LOs in observed rainfall (-6%) and streamflow 

data (-30%) compared to the BP (15%) and MZS (-100%) methods for observed rainfall 

data, compared to the BP (-100%) and MZS (-100%) methods for observed streamflow 

data.  

(b) The MZS method outperforms the BP method in detecting HOs in observed rainfall and 

streamflow datasets. This is indicated by a RD of Avg. detection of up to 50% and 150% by 

the MZS and BP methods respectively for observed rainfall data, and up to 100% and 

300%, respectively, for observed streamflow data. 
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(c) The BP was better at detecting LOs than detecting HOs for both rainfall and streamflow 

data. This is indicated by lower RD of Avg. LO detection compared to HOs in observed 

rainfall of up to -15% and 50% respectively. 

3.5.2 Use of synthetically generated data series 

A brief methodology, results and summary of results on the application of the BP, MZS and 

MGBT outlier detection methods on synthetically generated annual maximum data series are 

provided in Section 3.5.2.1, Section 3.5.2.2, Section 3.5.2.3, and Section 3.5.2.4 respectively.  

3.5.2.1 Methodology 

Synthetic outlier scenarios (i.e. Syn.L1, Syn.L2, Syn.L3, Syn.H1, Syn.H2 and Syn.H3) for each 

of the 100 synthetically generated rainfall and streamflow data series generated from the GEV 

PD per rainfall and streamflow gauge as detailed in Section 3.4.2.1 was used in this analysis. 

Datasets generated using the GEV PD was chosen due its widespread use in South Africa as 

highlighted in Section 3.4.1.1. The BP, MZS and MGBT were applied to each of the 100 

synthetically generated rainfall and streamflow data series per scenario and gauge. The BP and 

MZS were used to detect both LOs and HOs whereas the MGBT is designed to detect LOs 

only. It was assumed that no outliers were present in each of the 100 synthetically generated 

data series prior to outlier substitution. 

The following two assessments were conducted to evaluate the performance of outlier detection 

methods on synthetically generated data series: 

(a) Detailed assessment: Outliers detected in each of the 100 synthetically generated data series 

were averaged (Avg.d) per scenario to provide an average outlier detection per scenario. 

This process was repeated for each rainfall and streamflow gauge and outlier detection 

method. A comparison between the Avg.d percentage of outliers substituted and detected 

per scenario for all rainfall and streamflow gauges was then drawn. 

(b) Summative assessment: Avg.d outliers per scenario were further averaged across Syn.L1, 

Syn.L2 and Syn.L3 and across Syn.H1, Syn.H2 and Syn.H3 for each rainfall and flow gauge, 

and thereafter averaged across all rainfall and streamflow gauges. This resulted in averaged 

(Avg.s) substituted (Avg.s Sub) and detected (Avg.s Det) outliers per detection method. RDs 

were then calculated between Avg.s Sub and Avg.s Det using Equation 3.11 to provide a 
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RD of Avg.s detection (%). A positive RD indicates as over-detection whereas a negative 

RD indicates an under-detection. 

𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑.𝑠𝑠𝑠𝑠𝑠𝑠= [𝐴𝐴𝐴𝐴𝐴𝐴.𝑠𝑠𝐷𝐷𝐷𝐷𝐷𝐷𝑂𝑂,𝐷𝐷−𝐴𝐴𝐴𝐴𝐴𝐴.𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂,𝐷𝐷]
𝐴𝐴𝐴𝐴𝐴𝐴.𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂,𝐷𝐷

 ×  100                      [3.11]  

where: 

𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑.𝑠𝑠𝑠𝑠𝑠𝑠 = RD of Avg. detection on synthetically generated data series (%), 

Avg.s Det = Average detected outliers (%), 

O  = Outlier type (low or high),  

D  = Data type (rainfall or streamflow), and 

Avg.s Sub = Average substituted outliers (%). 

The performance of outlier detection methods on synthetically generated rainfall data series 

are provided in Section 3.5.2.2 and for streamflow data series in Section 3.5.2.3. 

3.5.2.2 Rainfall 

Results for the summative assessment are provided in this section with results for the detailed 

assessment provided in Figure C.4 to Figure C.6 in Appendix C. Substituted LOs are under-

detected by up to 30% from the MZS as indicated by a negative RD, with the BP and MGBT 

over-detecting LOs by up to 50% and 100% respectively as shown in Figure 3.28. HOs are 

over-detected from both the MZS and BP, with the BP method over-detecting more outliers 

(by up to 70%) than MZS (by up to 20%), as shown in Figure 3.28. 

 
Figure 3.28 RD of Avg. Detection of LOs and HOs in synthetically generated rainfall 

data series using the BP, MZS and MGBT 
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3.5.2.3 Streamflow 

Results for the detailed assessment on synthetically generated streamflow data series are 

provided in Figure C.7 to Figure C.9 in Appendix C. The MZS and BP generally under-detects 

LOs, with the MZS under-detecting by up to 60% and BP by up to 10%, as shown in Figure 

3.29. The MGBT significantly over-detects LOs up to 1550% as shown in Figure 3.29.  

This significant over-detection may be attributed to the swamping mechanism described in 

Section 3.2.2.3.4. Swamping was also observed in a study by Rahman et al. (2014). HOs are 

generally over-detected by the MZS and BP methods with the BP over-detecting by up to 40% 

indicated by positive RD values as shown in Figure 3.26. 

 
Figure 3.29 RD of Avg. Detection of LOs and HOs in synthetically generated 

streamflow data series using the BP, MZS and MGBT 

3.5.2.4 Summary of results 

The following list summarises the performance of outlier detection methods when using 

synthetically generated rainfall and streamflow data: 

(a) The MGBT performs the worst in detecting LOs within synthetically generated rainfall and 

streamflow data series by over-detecting up to 100% and 1550%, respectively, with the BP 

performing the best in detecting LOs. 

(b) MZS outperforms the BP method in detecting HOs within synthetically generated rainfall 

and streamflow datasets. This is indicated by a RD of Avg. detection of up to 20% and 80% 

respectively for synthetically generated rainfall data series and -5% and 40% respectively 

for synthetically generated streamflow data series. 
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(c) There was an improved performance of the BP in detecting LOs compared to HOs for both 

rainfall and streamflow data. This is indicated by lower RD of Avg. LO detection compared 

to HOs in synthetically generated rainfall of up to 60% and 80% respectively, and 

streamflow of up to -20% and 40% respectively. 

3.5.3 Section summary and conclusions 

The BP, MZS and MGBT were applied to observed and synthetically generated rainfall and 

streamflow data series containing substituted LOs (Obs.L1, Obs.L2, Obs.L3, Syn.L1, Syn.L2 

and Syn.L3) and HOs (Obs.H1, Obs.H2, Obs.H3, Syn.H1, Syn.H2 and Syn.H3). The BP and 

MZS were used to detect both LOs and HOs whereas the MGBT is only designed to detect 

LOs. 

From the analysis of observed data, the MGBT outperforms the BP and MZS in detecting LOs 

with a RD of Avg. detection by up to -6% and -30% in observed rainfall and streamflow data 

respectively. The MZS outperforms the BP method in detecting HOs with a RD of Avg. 

detection by up to 50% and 100% in observed rainfall and streamflow data respectively. From 

the analysis of synthetically generated data series, the MZS outperforms the BP and MGBT in 

detecting LOs in rainfall datasets by up to -30%. The BP outperforms the MGBT and MZS in 

detecting LOs in streamflow datasets by up to -15%. The MZS outperforms the BP method in 

detecting HOs, as indicated by the RD of Avg. detection of up to 20% and -3% in synthetically 

generated rainfall and streamflow data respectively. 

It is recommended from these results that the MGBT be used to detect LOs and the MZS be 

used to detect HOs in both rainfall and streamflow data. It is acknowledged, in being 

recommended, that the MGBT method is prone to under- and over-detection of possible LO 

events due to the mechanisms referred to as masking and swamping, respectively, as described 

in Section 3.2.2.3.4. Swamping is noticed on the use of synthetically generated data series. 

Results from this study will also inform future application in both practice and research and 

may reduce over- or under-estimation DRE and DFE.  
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3.6 IMPACT OF PERIOD OF RECORD AND REDUCED RECORD LENGTH ON 

DESIGN RAINFALL AND FLOOD ESTIMATION 

This section contains the detailed methodology, results, and conclusions on the impact of 

period of record and reduced record length on DRE and DFE in SA. A schematic of the 

structure of Section 3.6 is shown in Figure 3.30. 

 
Figure 3.30 Schematic of the structure of Section 3.6 

3.6.1 Impact of period of record 

A detailed methodology, results and summary of results on the impact of period of record on 

design rainfall and flood events are provided in Section 3.6.1.1, Section 3.6.1.2, Section 3.6.1.3, 

and Section 3.6.1.4, respectively. 

3.6.1.1 Methodology 

The length of the initial observed AMS record of each driver rainfall and streamflow gauge 

listed in Section 3.3 was reduced to 75% and 50% by using a moving window approach. A 

total of three windows each representing a chronological period, for both 75% and 50% of the 

AMS, were chosen thus creating six scenarios as explained in Table 3.6. A moving window 

approach was adopted to increase confidence in this analysis and to account for the impact of 

different time periods on DRE and DFE.  
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Table 3.6 Explanation of reduced period of record scenarios 

Design rainfall and flood events were estimated using the GEV PD for each scenario of reduced 

record length and compared to design estimates computed using the entire period, i.e. the initial 

AMS. The GEV PD was chosen to provide a conservative approach due to the degree of impact, 

as detailed in Section 3.4, and due its widespread use as highlighted in Section 3.4.1.1. The 

initial observed AMS datasets, i.e. observed data after data screening and pre-processing as 

detailed in Section 3.3, were used in this analysis and not the synthetically generated data series. 

It was assumed that the initial observed AMS record resulted in the most accurate and 

representative design events compared to events estimated from a reduced record length. It was 

also assumed that all observed rainfall and streamflow data fitted the GEV PD. It is 

acknowledged that stationarity within the rainfall and streamflow datasets was assumed and 

that any uncertainties in the observed data had not been taken into consideration. 

MRD, MARD, PBIAS and NSE were calculated per scenario, i.e. f.75, m.75, l.75, f.50, m.50, 

l.50 for each catchment and used to evaluate the impact of period of record on design estimates 

within each catchment. RD as described in Section 3.4.1.1 was calculated using Equation 3.12. 

MRD were then calculated as the arithmetic mean of the RD across all return periods. MARD 

was calculated as the arithmetic mean of the absolute RD across all return periods. NSE and 

PBIAS as detailed in Section 3.4.1.1 were calculated using Equation 3.13 and Equation 3.14 

respectively.  

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟= [𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟,𝑇𝑇− 𝐸𝐸100,𝑇𝑇]
𝐸𝐸100,𝑇𝑇

 ×  100                                 [3.12]  

where: 

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 = RD calculated between design rainfall or flood events estimated using a 
scenario of reduced record length and entire record length (%), 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟   = Design rainfall or flood estimate from f.75:l.50 (mm or m3.s-1), and 

𝐸𝐸100   = Rainfall or flood estimated using entire record length (mm or m3.s-1). 

Dataset Type Scenario ID Explanation 
Datasets 

using 75% of 
record length 

f.75 First 75% of observations, i.e. 1 to 75% of initial AMS  
m.75 Middle 75% of observations, i.e. 13 to 88% of initial AMS 
l.75 Last 75% of observations, i.e. 25 to 100% of initial AMS 

Datasets 
using 50% of 
record length 

f.50 First 50% of observations, i.e. 1 to 50% of initial AMS  
m.50 Middle 50% of observations, i.e. 25 to 75% of initial AMS 
l.50 Last 50% of observations, i.e. 50 to 100% of initial AMS 
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NSE = �1 − ∑ �𝐸𝐸100,𝑇𝑇−𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟,𝑇𝑇�
27

𝑇𝑇=1
∑ (𝐸𝐸100,𝑇𝑇− 𝐸𝐸�)27
𝑇𝑇=1

�                             [3.13] 

where: 

NSE= Statistic quantifying the fit of estimated design events against the 1:1 line, and 

Ē = Avg. rainfall or flood estimated by the entire record length (mm or m3.s-1). 

PBIAS = ∑ ��𝐸𝐸100,𝑇𝑇− 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟,𝑇𝑇�×100
𝐸𝐸100,𝑇𝑇

�7
𝑇𝑇=1                    [3.14] 

 
Design rainfall results are presented in Section 3.6.1.2 followed by design floods in Section 

3.6.1.3. 

3.6.1.2 Design rainfall 

Positive and negative MRD and PBIAS values are computed across all scenarios and rainfall 

gauges indicating an over- and under-estimation respectively of design events as shown in 

Figure 3.31 with no clear trend that an individual time period results in the largest over- or 

under-estimation. For example, the largest three under-estimations were calculated from f.75, 

m.75 and l.50 for Rainfall Gauges 0239097 and 0589670, and the largest three over-estimations 

were calculated from f.75, l.75 and f.50 for Rainfall Gauges 0268640 and 0239097 as indicated 

by having the largest MRD and PBIAS values as shown in Figure 3.31. 

There is no definite trend of consistent over- or under-estimation of rainfall events from an 

individual time period across all gauges as assessed from MRD and PBIAS values as shown in 

Figure 3.31. For example, f.75 results in an over-estimation for Gauge 0476031 indicated by 

positive MRD and PBIAS values whereas f.75 results in an under-estimation for Gauge 

0589670 indicated by negative MRD and PBIAS values as shown in Figure 3.31. 
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Figure 3.31 MRD and PBIAS for design rainfall events estimated using scenarios of 

75% (f.75, m.75, l.75) and 50% (f.50, m.50, l.50) of record length 

Design rainfall estimates are impacted by up to 8% across all scenarios as indicated by MARD 

values, as shown in Figure 3.32. No individual scenario consistently results in the largest 

impact on rainfall estimates across all gauges as indicated by varying MARD and NSE values 

shown in Figure 3.32 and by varying MRD and PBIAS values shown in Figure 3.31. For 

example, f.50 results in the largest MARD for Rainfall Gauge 0476031 whereas m.75 results in 

the largest MARD for Rainfall Gauge 0239097. This highlights that any scenario can result in 

the largest impact at a particular gauge. Furthermore, acceptable design rainfall events are 

estimated when using scenarios f.75, m.75, l.75, f.50, m.50 or l.50 across all gauges as indicated 

by PBIAS values (< ±10%) and NSE values (0.75 ≤ NSE ≤ 1.0) as shown in Figure 3.31 and 

Figure 3.32 respectively. 
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Figure 3.32 MARD and NSE for design rainfall events estimated using scenarios of 

75% (f.75, m.75, l.75) and 50% (f.50, m.50, l.50) of record length 

3.6.1.3 Design floods 

Design floods events are both over- and under-estimated with no definitive trend of consistent 

over- or under-estimation from an individual scenario across all catchments as indicated by 

MRD and PBIAS values shown in Figure 3.33. For example, the largest three over- and under-

estimations are not from an individual scenario or catchment indicated by MRD and PBIAS as 

evident in Figure 3.33.  

 
Figure 3.33 MRD and PBIAS for design flood events estimated using scenarios of 75% 

(f.75, m.75, l.75) and 50% (f.50, m.50, l.50) of record length 
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Design floods are impacted by up to 95% by different periods of reduced record length 

scenarios as indicated by MARD values as shown in Figure 3.34. No scenario consistently 

results in the largest impact on flood estimates across all catchments as indicated by varying 

MARD and NSE values shown in Figure 3.34, and by varying MRD and PBIAS values shown 

in Figure 3.33. NSE values further indicate that estimated design floods using different periods 

or record range between a classification of unsatisfactory (NSE < 0.5) to acceptable (0.75 ≤ 

NSE ≤ 1.0). 

 
Figure 3.34 MARD and NSE for design flood events estimated using scenarios of 75% 

(f.75, m.75, l.75) and 50% (f.50, m.50, l.50) of record length 

3.6.1.4 Summary of results 

The following results are summarised for design rainfall and flood events estimated with 

scenarios of different periods of record: 

(a) Estimated design rainfalls are impacted up to 8% by different periods of record and are 

classified as acceptable estimates, whereas design floods are impacted by up to 95% when 

using different periods of record with estimates ranging from unsatisfactory to acceptable.  

(b) No specific period of record consistently results in the largest impact on design rainfall and 

flood events. 

This significant difference between the impacts of different periods of record on design rainfall 

and floods may be attributed to the period of available rainfall (on average between 1880 and 

2000) and streamflow (on average between 1954 and 2013) data, i.e. rainfall data covers a 

greater time period and possibly different climate regimes compared to streamflow data. The 
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identification of climatic regimes is beyond the scope of this study. The difference in impacts 

may also be attributed to non-stationarity in land use and other aspects associated to the 

assumption of stationarity as detailed in Section 3.2.1.2. Assessing stationarity within rainfall 

and streamflow data is beyond the scope of this study. 

3.6.2 Impact of reduced record length 

A brief methodology, detailed results and summary of results on the impact of reduced record 

length on design rainfall and flood events are provided in Section 3.6.2.1, Section 3.6.2.2, 

Section 3.6.2.3, and Section 3.6.2.4, respectively.  

3.6.2.1 Methodology 

Computed statistics (MRD, MARD, NSE and PBIAS) were averaged across scenarios using 

75% of record and across scenarios using 50% of record for each catchment and thereafter 

averaged across all catchments to provide Avg. MRD, Avg. MARD, Avg. NSE and Avg. PBIAS. 

These averaged statistics were used to evaluate and draw comparisons between the overall 

impact of 75% and 50% of reduced record length on DRE and DFE. Design rainfall results are 

presented in Section 3.6.2.2 followed by design floods in Section 3.6.2.3. 

3.6.2.2 Design rainfall 

Design rainfall events are generally under-estimated from the scenarios reduced to 75% and 

50% of AMS record length as indicated by negative Avg. MRD and Avg. PBIAS values as 

shown in Figure 3.35. Design rainfall events estimated from the 75% and 50% scenarios are 

impacted by up to 4% indicated by Avg. MARD values as shown in Figure 3.36. It is also 

observed that there is a negligible difference between events estimated by the 75% and 50% 

scenarios. Estimated rainfall events from the 75% and 50% scenarios are classified as 

acceptable estimates based on the Avg. PBIAS (< ±10%) and Avg. NSE (> 0.75) as shown in 

Figure 3.35 and Figure 3.36 respectively. 
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Figure 3.35 Avg. MRD and Avg. PBIAS for design rainfall events estimated using 75% 

and 50% of AMS records 

 
Figure 3.36 Avg. MARD and Avg. NSE for design rainfall events estimated using 75% 

and 50% of AMS records 

3.6.2.3 Design floods 

Design floods are under-estimated from both the 75% and 50% scenarios, as indicated by 

negative Avg, MRD and Avg. PBIAS values as shown in Figure 3.37. Design floods are 

impacted by up to 24% from reduced AMS record lengths, with the impact being greater from 

the 50% scenario than the 75% reduction scenario, as indicated by a larger Avg. MARD and 

smaller Avg. NSE value as shown in Figure 3.38. Estimates are classified as satisfactory from 

the 75% and 50% scenarios as indicated by Avg. NSE values (0.50 < NSE ≤ 0.65) as shown in 

Figure 3.38. 
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Figure 3.37 Avg. MRD and Avg. PBIAS for design flood events estimated using 75% 

and 50% of AMS records 

 
Figure 3.38 Avg. MARD and Avg. NSE for design flood events estimated using 75% 

and 50% of AMS records 

3.6.2.4 Summary of results 

The following results are summarised for design rainfall and flood events estimated from 75% 

and 50% of AMS records: 

(a) Design rainfall events are impacted by up to 4% with design floods being much more 

impacted by up to 24% from reduced AMS record lengths.  

(b) There is a negligible difference in impact between design rainfall estimated using the

 75% and 50% of AMS records scenario. Design floods are impacted more when using 

the 50% of AMS record scenario than the 75% of the AMS record scenario.  
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This significant difference between the impacts of different record lengths on design rainfall 

and floods may be attributed to period of available rainfall (on average between 1880 and 2000) 

and streamflow (on average between 1954 and 2013) and the assumption of stationarity as 

detailed in Section 3.6.1.4. 

3.6.3 Section summary and conclusion  

Three windows each representing a chronological time period within 75% and 50% of AMS 

records were used to evaluate the impact of different periods of available record and the impact 

of reduced record length on DRE and DFE. Six scenarios (f.75, m.75, l.75, f.50, m.50, l.50) 

were created and comparisons were made between design events estimated from a scenario of 

reduced record length and the entire record length to evaluate the impact of period of record. 

Computed statistics were averaged across scenarios using 75% of record (f.75, m.75, l.75) and 

across scenarios using 50% of record (f.50, m.50 or l.50) for each catchment and thereafter 

averaged across all catchments to evaluate the overall impact of 75% and 50% of reduced 

record length on DRE and DFE. 

From the analysis of the impact of period of record, estimated design rainfall events are both 

over- and under-estimated and are impacted by up to 8% whereas design floods are impacted 

by up 95% when using various scenarios (f.75, m.75, l.75, f.50, m.50, l.50) of periods of record.  

From the analysis of the impact of reduced record length, design rainfall events are impacted 

by up to 4% and design floods impacted by up to 24% from either the 75% and 50% scenario 

with both design rainfall and floods under-estimated. There is a negligible difference in impact 

between design rainfall estimates from using the 75% and 50% scenario whereas for design 

floods, 50% of AMS record length has a greater impact than 75%. 

In practice, the use of longer periods of record will improve the applicability of the data for 

water management purposes as longer periods may cover quasi-periodic fluctuations 

irrespective of when the observations were recorded. In addition, the use of reduced record 

length generally results in an under-estimation of design rainfall by up to 4% and floods by 

24% thereby reducing the accuracy of infrastructural design which increases the risk of failure 

and increases risk to the safety of lives and severe economic, environmental, and social 

consequences. In research, the use of longer periods of record will improve the accuracy of 

DRE and DFE thereby increasing the value of research aimed for, inter alia, decision and 
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policy making purposes. It is also recommended that this study be expanded to other regions 

in SA to have more confidence in the findings. 

3.7 IMPACT OF A REDUCED NETWORK DENSITY ON DESIGN RAINFALL  

This section contains a general approach, detailed methodology, discussion of results, and 

conclusion to assess the impact of a reduced network density on DRE and DFE. The general 

approach is detailed in Section 3.7.1 followed by a detailed methodology, discussion of results 

and summary of results for both systematic and random removal of gauges in Section 3.7.2 and 

Section 3.7.2.3 respectively. A section summary and conclusion is provided in Section 3.7.2.4. 

A schematic of the structure of Section 3.7 is shown in Figure 3.39.  

 

Figure 3.39 Schematic of the structure of Section 3.7 

3.7.1 General approach 

The Index Flood Method (IFM) introduced by Dalrymple (1960) and an index storm-based 

approach (Hosking and Wallis, 1993; Hosking and Wallis, 1997), referred to as an Index 

Rainfall Method (IRM) in this study, were used to estimate design rainfall and floods at a 

predetermined location using different gauge network densities. The IFM estimates design 

floods at an ungauged site by using hydrological data from gauged sites within a homogenous 
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region and by scaling flood data with a scaling factor referred to as the index flood or index 

rainfall. The IFM assumes that all scaled flood data within a homogenous region follows the 

same PD. The IRM follows the same principles as the IFM. The application of the IFM or IRM 

involves identifying a homogenous region and then developing regional growth curves within 

the homogenous region. Regional growth curves describe the relationship between the design 

estimate for a given return period which is normalised by a scaling factor and the exceedance 

probability or return period. The scaling factor may be the median or mean of an AMS 

(Hosking and Wallis, 1997; Chebana and Ouarda, 2009) or the 10-year design estimate 

(Farquharson et al., 1992; Pilgrim, 2001; Calitz and Smithers, 2020).  

In this study, the IFM and IRM were used to estimate design events at a predetermined Point 

of Interest (PoI) which is a gauged location within the total available gauged network using 

reduced network densities, based on the assumption that the PoI is ungauged. Design events 

estimated at the PoI using a reduced network density were then compared to design events 

estimated at the PoI using the total available network. A gauged network reduction to 75% and 

50% of the total available network were chosen to follow the averaged per decade decline of 

rainfall gauges in South Africa between 1979 and 2009 as calculated from Figure 3.4 

The scaling factor required for the IFM and IRM chosen in this study is the 2-year design event 

for rainfall (R2) and floods (Q2). The 2-year design event scaling factor is an adaptation of the 

10-year design event scaling factor as used by Farquharson et al. (1992) and Pilgrim (2001). 

The 10-year design event scaling factor has proved to be successful by Farquharson et al. 

(1992), Pilgrim (2001) and Calitz and Smithers (2020), and due to its simplicity of use has been 

adopted in this study. A study on the possible impacts of the choice of the index value on the 

performances of the estimated design events was not an objective of this study. Homogenous 

regions required for the IFM as shown in Figure 3.40 were identified as overlapping regions 

between the HRU (1972) veld types, RMF K-regions (Kovacs, 1988) and the climatic zones 

used by Gericke (2015). Homogenous regions for the IRM were defined as overlapping regions 

between the clusters developed by Smithers (1996) and climate zones used by Gericke (2015). 

Three homogenous regions were chosen for the IFM and for the IRM. Streamflow gauges and 

rainfall gauges within these homogenous regions were then selected and used in the index flood 

and rainfall approaches. The rainfall gauges and associated attributes are provided in Table 

D1.1, Appendix D and mapped in Figure D1.1, Figure D1.2 and Figure D1.3 with streamflow 

gauges provided in   
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Table D1.2 and mapped in Figure D1.4, Figure D1.5, and Figure D1.6 in Appendix D1. For 

ease of reference, the three homogenous regions identified for the IFM and IRM are referred 

to as the climatic zones used by Gericke (2015) within which they are situated, i.e. ESC, NI 

and SWC. 

Growth curves were derived within each homogenous region by using two gauge density 

reduction methods, i.e. a systematic removal and a random removal of gauges and design 

events were estimated using the GEV PD. The systematic removal of gauges involved 

removing the closest gauges from a PoI and thereafter removing the furthest gauges within 

each homogenous region, and the random removal of gauge method involved removing gauges 

at random around a PoI. Details of the systematic and random removal of gauges are provided 

in Section 3.7.2 and Section 3.7.3 respectively. The GEV PD was chosen to provide a 

conservative approach due to the degree of impact as detailed in Section 3.4, and due its 

widespread use as highlighted in Section 3.4.1.1. For each gauge reduction method, the median 

growth curves from each site were selected for each scenario of the gauged network to estimate 

the 2-, 5-, 10-, 20-, 50-, 100- and 200-year design event values. As an example, the index 

rainfall growth curve for the NI region is shown in Figure 3.41, in which RT represents the T-

year design rainfall estimate and R2 represents the 2-year design rainfall estimate. Relationships 

between R2 and MAP, and Q2 and catchment area were developed to estimate R2 or Q2 at the 

PoI. Q2 represents the 2-year design flood estimate. MAP was obtained from the Lynch (2004) 

database and catchment areas were obtained from the Nathanael (2015) study. An example of 

the R2 vs MAP relationship for Region NI is shown in Figure 3.42. R2 or Q2 and the appropriate 

growth curve factor (RT/R2 or QT/Q2) is then used to estimate the desired RT or QT at the PoI 

using the growth curve using Equation 3.15 assuming that the PoI is ungauged. The index 

rainfall and flood approach were applied to a systematic and random gauge removal method, 

which are detailed in Section 3.7.2 and Section 3.7.3 respectively.  
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Figure 3.40 Homogenous regions used in the IFM and IRM 
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Figure 3.41 Growth curve for design rainfall in Region NI 

 
Figure 3.42 R2 vs MAP for the NI homogenous region 

𝑃𝑃(𝑇𝑇,𝑁𝑁)= 𝑃𝑃2. 𝑞𝑞𝑅𝑅(𝑇𝑇,𝑁𝑁)                     [3.15] 

where: 

P = Design rainfall or flood estimate (mm or m3.s-1),  

N = Percentage of gauged network (100%, 75% or 50%), 

P2 = 2-year design rainfall or flood events (mm or m3.s-1), and 

qR = Index rainfall or flood growth curve. 

3.7.2 Systematic removal of gauges 

This analysis aimed to evaluate the impact of a reduced gauged network on DRE and DFE and 

the subsequent impact of using neighbouring gauges with varying proximity from a pre-

selected PoI. The method, results and summary of results on the application of a systematic 

gauge removal method are provided in Section 3.7.2.1, Section 3.7.2.2, Section 3.7.2.3 and 

Section 3.7.2.4 respectively. 



Impacts of Floods and Data Availability, Data Quality and Data Screening on the Estimation of Design Floods 

 

87 

3.7.2.1 Methodology 

The gauged networks were reduced to 75% and 50% of the total available network to follow 

historic gauged reduction trends in SA as detailed in Section 3.7.1. Four scenarios 

(Closest.75%, Closest.50%, Furthest.75% and Furthest.50%) were created to represent this 

systematic removal of gauges as explained in Table 3.7.  

Table 3.7 Scenarios of reduced gauge density using a systematic removal of gauges  

Scenario ID Explanation 

Closest.75% Closest 75% of the total available gauged network around the PoI. 

Closest.50% Closest 50% of the total available gauged network around the PoI. 

Furthest.75% Furthest 75% of the total available gauged network around the PoI. 

Furthest.50% Furthest 50% of the total available gauged network around the PoI. 

The index approach explained in Section 3.7.1 was then applied using each systematic gauge 

reduction scenario to estimate the design rainfall and floods events at the PoI. Comparisons 

were then drawn between rainfall and flood events estimated from each of the four scenarios, 

and from the total available network. The total available rainfall and flow networks within each 

homogenous region defined in Section 3.7.1 were mapped on QGIS 10.3.1 and are provided in 

Appendix D1. Thereafter, the PoI within each homogenous region rainfall network was chosen 

based on centrality within the homogenous region and having a MAP similar to the median 

MAP from all gauges within the homogenous region. Similarly, the PoI within each 

homogenous region streamflow network was chosen based on centrality within the 

homogenous region and having a catchment area similar to the median catchment area from all 

gauges within the homogenous region.  

It was assumed that the total available gauged network resulted in the most accurate and 

representative design events compared to events estimated from a reduced gauged network. It 

was assumed that no outliers were present in the initial AMS data and that all observed rainfall 

and streamflow data fitted the GEV PD. Stationarity within each observed rainfall and 

streamflow dataset has also been assumed. It is acknowledged that: (a) factors such as rainfall 

type, elevation, seasonality of precipitation and land use have not been accounted for within 

each homogenous region, (b) the homogeneity of the growth curves within each region has not 
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been tested, and (c) any uncertainties in the observed data have not been taken into 

consideration in this analysis. 

MRD, MARD, PBIAS and NSE were computed and used to evaluate the impact of network 

density on DRE and DFE. RD as described in Section 3.4.1.1 was calculated using Equation 

3.16. MRD were then calculated as the arithmetic mean of the RD values across all return 

periods and MARD was calculated as the arithmetic mean of the absolute RD across all return 

periods. NSE and PBIAS were calculated using Equation 3.17 and Equation 3.18 respectively.  

𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑. = [𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟.,𝑇𝑇,𝑖𝑖− 𝐸𝐸100,𝑇𝑇,𝑖𝑖]
𝐸𝐸100,𝑇𝑇,𝑖𝑖

 ×  100                                [3.16]  

where: 

𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑. = RD calculated between design rainfall or flood events estimated using a 
scenario of reduced network density and entire network density (%), 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. = Design rainfall or flood estimate from Random.75% or Random.50% (mm or 
m3.s-1), 

i  = Set of gauges (1, 2, 3…100), and 

𝐸𝐸100  = Rainfall or flood estimated using 100% of gauged network (mm or m3.s-1). 

NSE = �1 − ∑ �𝐸𝐸100,𝑇𝑇,𝑖𝑖−𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑇𝑇,𝑖𝑖�
27

𝑇𝑇=1
∑ (𝐸𝐸100,𝑇𝑇,𝑖𝑖− 𝐸𝐸�)27
𝑇𝑇=1

�                               [3.17] 

where: 

NSE = Statistic quantifying the fit of estimated design events against the 1:1 line, and 

Ē = Avg. rainfall or flood estimated by the entire record length (mm or m3.s-1). 

PBIAS = ∑ ��𝐸𝐸100,𝑇𝑇,𝑖𝑖− 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑇𝑇,𝑖𝑖�×100
𝐸𝐸100,𝑇𝑇,𝑖𝑖

�7
𝑇𝑇=1                       [3.18] 

The following two assessments were performed to evaluate the impact of a systematic removal 

of gauges: 

(a) Detailed assessment: Statistics (MRD, MARD, NSE and PBIAS) were computed per 

scenario, i.e. Closest.75%, Closest.50%, Furthest.75% and Furthest.50% for each 

homogenous region.  

(b) Summative assessment: Computed statistics were averaged (Avg.s) across scenarios with 

75%, 50%, closest and furthest gauged network for each homogenous region and thereafter 

averaged across all catchments. Statistics from Closest.75% and Furthest.75% were 

averaged and compared to averaged statistics from Closest.50% and Furthest.50% to 
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provide an overall density impact when using 75% and 50% of the gauged network. 

Statistics from Closest.75% and Closest.50% were averaged and compared to averaged 

Furthest.75% and Furthest.50% to provide an overall impact for proximity of gauges. 

Results for the impact of a systematically reduced network density on DRE and DFE are 

presented in Sections 3.7.2.2 and Section 3.7.2.3 respectively. 

3.7.2.2 Design rainfall 

Design rainfall results for the detailed assessment are provided in Section 3.7.2.2.1 with results 

for the summative assessment provided in Section 3.7.2.2.2. 

3.7.2.2.1 Detailed assessment 

Design rainfall estimated by the Closest.75% and Closest.50% scenarios are consistently 

under-estimated across all regions as indicated by negative MRD and PBIAS values, whereas 

estimates by the Furthest.75% and Furthest.50% scenarios are consistently over-estimated as 

indicated by positive MRD and PBIAS as shown in Figure 3.43. Design rainfall events by the 

Closest.50% scenario are the most under-estimated compared to all other scenarios across all 

homogenous regions, and events from the Furthest.50% scenario are the most over-estimated 

as indicated by largest positive MRD and PBIAS values shown in Figure 3.43. 

 
Figure 3.43 MRD and PBIAS for design rainfall events estimated using scenarios 

(Closest.75%, Closest.50%, Furthest.75% and Furthest.50%) of a 

systematically reduced gauge network 
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Figure 3.44 MARD and NSE for design rainfall events estimated using scenarios 

(Closest.75%, Closest.50%, Furthest.75% and Furthest.50%) of a 

systematically reduced gauge network 

Design rainfall events are impacted by up to 9% as indicated by MARD values as shown in 

Figure 3.44. Events are most impacted by the Furthest.50% scenario in the ESC and SWC 

regions and by the Closest.50% scenario in the NI regions as indicated by the largest MARD 

and smallest NSE values as shown in Figure 3.44. Furthermore, acceptable events are estimated 

by all scenarios across all regions as classified by PBIAS values (< ±15%) and NSE values (> 

0.75) as shown in Figure 3.43 and Figure 3.44 respectively. 

3.7.2.2.2 Summative assessment 

On average, scenarios using 75% of rainfall gauges and the closest rainfall gauges are under-

estimated as indicated by negative Avg.s MRD and Avg.s PBIAS values as shown Figure 3.45, 

and the converse is true for scenarios using 50% and the furthest rainfall gauges. 
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Figure 3.45 Avg.s MRD and Avg.s PBIAS for design rainfall events estimated using 

scenarios (Closest.75%, Closest.50%, Furthest.75% and Furthest.50%) of a 

systematically reduced gauge network 

Design rainfall events are impacted by up to 4.2% from scenarios using 50% of the gauged 

network which are greater than impacts from scenarios using 75% of the gauged network, i.e. 

impacted by up to 2% as indicated by larger Avg.s MARD values and smaller Avg.s NSE values 

as shown in Figure 3.46, and by larger Avg.s MRD and Avg.s PBIAS values, as shown in Figure 

3.45. Design rainfall events are impacted by up to 4% from scenarios using the furthest gauged 

network which are greater than impacts from scenarios using the closest gauged network, i.e. 

impacted by up to 2.5%. 

 
Figure 3.46 Avg.s MARD and Avg.s NSE for design rainfall events estimated using 

scenarios (Closest.75%, Closest.50%, Furthest.75% and Furthest.50%) of 

a systematically reduced gauge network 
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3.7.2.3 Design floods 

Design flood results for the summative assessment are provided in this section and results for 

the detailed assessment provided in Figure D2.1 in Appendix D2. Design flood events are 

generally under-estimated from scenarios using 75% of streamflow gauges and the furthest 

streamflow gauges as indicated by positive Avg.s MRD and Avg.s PBIAS values, and over-

estimated from scenarios using 50% of streamflow gauges and the closest streamflow gauging 

network as indicated by negative Avg.s MRD and Avg.s PBIAS values as shown in Figure 3.47. 

 
Figure 3.47 Avg.s MRD and Avg.s PBIAS for design flood events estimated using 

scenarios (Closest.75%, Closest.50%, Furthest.75% and Furthest.50%) of a 

systematically reduced gauge network 

 
Figure 3.48 Avg.s MARD and Avg.s NSE for design flood events estimated using 

scenarios (Closest.75%, Closest.50%, Furthest.75% and Furthest.50%) of a 

systematically reduced gauge network 
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Design floods events are impacted by up to 28% from scenarios using 50% of the gauged 

network which are greater than impacts from scenarios using 75% of the gauged network, i.e. 

impacted by up to 17%, and impacted by up to 24% from scenarios using the closest gauged 

network which are slightly greater than impacts from scenarios using the furthest gauged 

network, i.e. impacted by up to 22% as indicated by larger Avg.s MARD values and smaller 

Avg.s NSE values as shown in Figure 3.48, and by larger Avg.s MRD values as shown in Figure 

3.47. 

3.7.2.4 Summary of results 

The following results are summarised for design rainfall and flood events estimated from the 

systematic reduction of gauged networks: 

(a) Design rainfall events are impacted by up to 4.2% from scenarios using 50% of the gauged 

network which are greater than impacts from scenarios using 75% of the gauged network, 

i.e. impacted by up to 2%.  

(b) Design floods events are impacted by up to 28% from scenarios using 50% of the gauged 

network which are greater than impacts from scenarios using 75% of the gauged network, 

i.e. impacted by up to 17%. 

(c) Design rainfall events are impacted by up to 4% from scenarios using the furthest gauged 

network which are greater than impacts from scenarios using the closest gauged network, 

i.e. impacted by up to 2.5%.  

(d) Design floods events are impacted by up to 24% from scenarios using the closest gauged 

network which are slightly greater than impacts from scenarios using the furthest gauged 

network, i.e. impacted by up to 22%.  

The greater impact in design events estimated by the 75% gauged network scenario compared 

to the 50% gauged network scenario may be a result of a reduced regionalisation efficiency 

(Lebecherel et al., 2016) as mentioned in Section 3.2.1.2. The greater impact in design rainfall 

estimates by the furthest gauged network compared to the closest gauged network may be a 

result of the principle of Tobler’s first law of geography (Tobler, 1970) as mentioned in Section 

3.2.1.2. The greater impact in design flood estimates by the closest gauged network compared 

to the furthest gauged network is contrary to the trend on design rainfall estimates and contrary 

to findings of the HDes method applied by Lebecherel et al. (2016). This contrary trend may 

be due to factors such as rainfall type, seasonality of precipitation, catchment elevation, 
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geology, soil, topography and land use not being accounted for as mentioned in Section 3.7.2.1, 

and an insufficient number of study sites used in this study. Design floods are more impacted 

by a reduced gauged network than estimated design rainfall which may be attributed to: (a) the 

use of more gauges in the rainfall network than the streamflow network, which may affect the 

regionalisation efficiency, (b) any uncertainties or inaccuracies in the delineated homogenous 

regions, and (c) the period of available records and stationarity as detailed in Section 3.6.1.4. 

3.7.3 Random removal of gauges 

This section focuses on evaluating the impact of a reduced rainfall and streamflow gauge 

network on DRE and DFE by the random removal of gauges. 

3.7.3.1 Methodology 

A PoI required for the IRM and IFM within each of the three homogenous regions as detailed 

in Section 3.7.1 were chosen as the gauge having the median MAP or catchment area. 

Thereafter, gauges were removed at random such that 75% of the network remained for 

analysis. This process of random removal of gauges was repeated 100 times to create 100 

networks with each having 75% of the total available gauged network. Similarly, 100 networks 

with each having 50% of the total available gauged network were also generated. Two 

scenarios of a randomly reduced gauged network were created, i.e. containing 75% and 50% 

of the total gauged network area and are referred to as Random.75% and Random.50%, 

respectively. The IRM and IFM were then applied 100 times to each of the 100 networks having 

75% or 50% of gauge network to estimate the 2-, 5-, 10-, 20-, 50-, 100- and 200-year estimates 

at a PoI. Comparisons were then drawn between the estimated design events at the PoI when 

using the total available network and for each reduced network from Random.75% and 

Random.50%. MRD, as described in Section 3.7.2.1, was computed for each of the 100 

networks of gauges and an Avg. MRD was then calculated as the average across all 100 MRD 

values. Similarly, Avg. MARD, Avg. PBIAS and Avg. NSE were computed. The assumptions 

made in the systematic gauge removal method as detailed in Section 3.7.2.1 are also made in 

the method of random gauge removal.  

Results for the impact of a randomly reduced network density on estimated design rainfall and 

flood events are presented in Section 3.7.3.2 and Section 3.7.3.3 respectively. 



Impacts of Floods and Data Availability, Data Quality and Data Screening on the Estimation of Design Floods 

 

95 

3.7.3.2 Design rainfall 

Negative Avg. MRD and Avg. PBIAS values were computed for design rainfall events from 

Random.75% and Random.50% across all homogenous regions indicating a general under-

estimation as shown in Figure 3.49.  

 
Figure 3.49 Avg. MRD and Avg. PBIAS of design rainfall events computed using a 

75% and 50% randomly reduced gauge network 

Design rainfall is impacted by up to 4.5% when estimated from the Random.50% scenario and 

by up to 2.2% when estimated from the Random.75% scenario across all regions as indicated 

by Avg. MARD values as shown in Figure 3.50, and this greater impact is also indicated by 

larger Avg. MRD and Avg. PBIAS as shown in Figure 3.49. It is further observed that acceptable 

design rainfall events are estimated from the Random.75% and Random.50% scenarios across 

all homogenous regions as classified by Avg. PBIAS values (< 10%) and Avg. NSE values (> 

0.75) as shown in Figure 3.49 and Figure 3.50, respectively.  
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Figure 3.50 Avg. MARD and Avg. NSE of design rainfall events computed using a 75% 

and 50% randomly reduced gauge network 

3.7.3.3 Design floods 

Design flood events are over-estimated from both the Random.75% and Random.50% 

scenarios across all climate regions as indicated by positive Avg. MRD and Avg. PBIAS values 

as shown in Figure 3.51. 

 
Figure 3.51 Avg. MRD and Avg. PBIAS of design flood events computed using a 75% 

and 50% randomly reduced gauge network 

Design flood events are impacted by up to 60% from the Random.50% scenario which are 

greater than impacts from the Random.75% scenario, i.e. impacted by up to 30% across all 

regions as indicated by Avg. MARD and smaller Avg. NSE values evident in Figure 3.52, and 
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larger Avg. MRD and Avg. PBIAS values in Figure 3.51. Design floods are classified as 

satisfactory from the Random.50% scenario and acceptable from the Random.75% scenario by 

Avg. NSE values, i.e. NSE < 0.5 and NSE > 0.75 respectively, as shown in Figure 3.52. 

 
Figure 3.52 Avg. MARD and Avg. NSE of design flood events computed using a 75% 

and 50% randomly reduced gauge network 

3.7.3.4 Summary of results 

The following results are summarised for design rainfall and flood events estimated from the 

random reduction of gauged networks:  

(a) Design rainfall events are impacted by up to 4.5% from the Random.50% scenario which 

are greater than impacts from the Random.75% scenario, i.e. impacted by up to 2.2% across 

all regions. 

(b) Design flood events are impacted by up to 60% from the Random.50% scenario which are 

greater than impacts from the Random.75% scenario, i.e. impacted by up to 30% across all 

regions. 

The greater impact in design events estimated by the 75% gauged network scenario compared 

to the 50% gauged network scenario may be a result of various factors as detailed in Section 

3.7.2.4.  

3.7.4 Section summary and conclusion 

Two methods were applied to evaluate the impact of a reduced network density on design 

rainfall and flood events, i.e. a systematic and random removal of gauges. The first analysis 
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evaluated the difference between design rainfall and flood events estimated with 75% and 50% 

of the gauged network which was systematically reduced. A total of four systematic gauge 

removal scenarios were created (Closest.75%, Closest.50%, Furthest.75% and Furthest.50%) 

which represent the closest and furthest 75% and 50% of the gauged network around a PoI.  

For the first analysis, i.e. a systematic removal of gauges, design rainfall events are impacted 

by up to 4.2% from scenarios using 50% of the gauged network and by up to 2% from scenarios 

using 75% of the gauged network. Design floods events are impacted by up to 28% from 

scenarios using 50% of the gauged network and by up to 17% from scenarios using 75% of the 

gauged network. Design rainfall events are impacted by up to 4% from scenarios using the 

furthest gauged network which are greater than impacts from scenarios using the closest gauged 

network, i.e. impacted by up to 2.5%. Design floods events are impacted by up to 24% from 

scenarios using the closest gauged network which are slightly greater than impacts from 

scenarios using the furthest gauged network, i.e. impacted by up to 22%. A discussion of these 

findings is provided in Section 3.7.2.4.  

For the second analysis, i.e. a random removal of gauges, differences between design rainfall 

and floods estimated with the total available network and with 75% and 50% of the gauged 

network were assessed. A total of 100 networks each having 75% of the gauged network 

(Random.75%) and 50% of the gauged network (Random.50%) were generated and used to 

estimate the design rainfall and flood events at a PoI. Results highlight that design rainfall 

events are impacted by up to 4.5% from the Random.50% scenario which are greater than 

impacts from the Random.75% scenario, i.e. impacted by up to 2.2% across all regions. Design 

flood events are impacted by up to 60% from the Random.50% scenario which are greater than 

impacts from the Random.75% scenario, i.e. impacted by up to 30% across all regions. 

The results indicate that in practice and research the use of a denser monitoring network and 

rainfall gauges in a closer proximity to a PoI will improve both the accuracy and confidence in 

DRE and DFE at ungauged sites, thereby increasing the accuracy of infrastructural design 

which limits the risk to the safety of lives, and severe economic, environmental, and social 

consequences. Design floods estimated from scenarios using the closest gauged network are 

impacted slightly more compared to floods estimated from scenarios using the furthest gauged 

network which is contrary to the trend observed for design rainfall estimates and contrary to 

findings of the HDes method applied by Lebecherel et al. (2016). It is recommended that this 

study be expanded to other regions in SA to verify and have more confidence in the findings. 
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3.8 DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS  

The following research questions were addressed in this study: 

(a) What is the impact of LO and HO events on DRE and DFE and should outliers be 
excluded from DRE and DFE in SA? 
To address this question, the impacts of LO and HO events on DRE and DFE in SA 

were assessed [Aim (a)]. Undertaking a detailed review of relevant literature [Objective 

(a)] and calculating the impact of design rainfall and flood estimates to the introduction 

of LO and HO events using observed data and synthetically generated data series 

[Objective (b) and Objective (c)] addressed Aim (a).  

Objective (a) was met by conducting a detailed literature review which included the 

importance of data screening and the influence of LO and HO events on DRE and DFE. 

In summary, data screening is necessary to ensure reliable design flood estimations and 

is regular practice in many European countries, USA, Australia and UK (Robson and 

Reed, 1999; Madsen, 2013; Ball et al., 2016; England Jr et al., 2019). Guidelines for 

data screening and quality control for DFE includes the detection and treatment of 

outliers (England Jr et al., 2019). Outlier events are data points which significantly 

depart from the trend of the remaining dataset (Lamontagne et al., 2013; Lamontagne 

et al., 2016; England Jr et al., 2019). LO events affect, inter alia, sample statistics which 

results in biased parameter estimates, influences flood frequency analysis and the 

estimation of rare flood events (Lamontagne et al., 2013; Asikoglu, 2017; England Jr 

et al., 2019). HO observations have been found to directly influence FFA and cause 

over-estimation of design events (England Jr et al., 2019). There are no prescribed 

guidelines for data screening and quality control of rainfall or streamflow data for 

regular practice in South Africa apart from the use of the standardised Z-Score approach 

to detect outliers (Van der Spuy and Rademeyer, 2018) which, however, has 

fundamental shortcomings (Iglewicz and Hoaglin, 1993). Further details are provided 

in Section 3.2. 

Objective (b) and Objective (c) were met by calculating and substituting LOs and HOs 

into observed and synthetically generated rainfall and streamflow AMS of six rainfall 

and streamflow gauges selected in three different climatic regions in SA. The actual PD 

of each observed dataset is not known, hence the analysis using observed data may be 
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biased for or against a particular PD. Synthetic datasets were generated to improve 

confidence of the analysis by creating AMS datasets from a defined PD. RFA and FFA 

were performed on observed data and synthetically generated data series per gauge 

using the GEV, GPA, Kappa, LN and LP3 PDs to estimate the 2-, 5-, 10-, 20-, 50-, 100- 

and 200-year return period events with and without synthetic outliers. Comparisons 

between estimated design rainfall and floods with and without substituted outliers were 

then undertaken. Details on the methodology, assumptions and limitations are provided 

in Section 3.4. 

Results from the analysis of observed datasets showed that design events estimated by 

the LN PD are the most impacted by LOs, i.e. by up to 22% for design rainfall and 45% 

for design floods across catchments, and the least impacted by HOs, i.e. by up to 6% 

for design rainfall and 22% for design floods across catchments. Design events 

estimated by the GEV and GPA PDs are the least impacted by LOs, i.e. by up to 3% 

for design rainfall and 2% for design floods across catchments, and the most impacted 

by HOs, i.e. by up to 16% for design rainfall and 46% for design floods across 

catchments. Regarding the analysis of synthetically generated data series, design 

rainfall events estimated by the GEV and GPA PDs are impacted by up to 2% in the 

presence of LOs across catchments and up to 1% for design flood events. Design 

rainfall and flood events estimated by the GEV and GPA PDs in the presence of HOs 

are impacted by up to 12% and 13% respectively across catchments. The difference in 

results between using observed and synthetically generated datasets may be a result of 

the incorrect PD being applied on the observed datasets and subsequently the generation 

and substitution of biased synthetic LOs and HOs. 

In both practice and research, the results highlight the impact of outlier events and 

indicate that outlier events must not be ignored in DRE and DFE. In practice, the 

presence of LOs generally results in an under-estimation of design rainfall and floods 

thereby reducing the accuracy of infrastructural design which increases the risk of 

failure and increases risk to the safety of lives and severe economic, environmental, and 

social consequences. The presence of HOs generally results in an over-estimation of 

design rainfall and floods thereby resulting in an over-design of infrastructure which 

provides a conservative approach; however, the economic viability of the design may 
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be questioned. The LN and GEV PD are most impacted by LOs and HOs respectively 

therefore special care should be taken in their application.  

It is recommended from this study that: (a) outlier events must not be ignored in DRE 

and DFE, (b) LOs be excluded and HOs should not be excluded from DRE and DFE in 

SA. Judgement from the analyst is ultimately required on whether to include or exclude 

HOs from further analysis, as also recommended by England Jr et al. (2019) after such 

events have been verified against events from neighbouring stations, (c) special caution 

be taken when applying the Kappa, LN, LP3 and GEV PDs for DRE and DFE in SA 

due to the impact of outliers when using these PDs, and (d) this study be expanded to 

other regions in SA to have more confidence in the findings and thereafter be used in a 

South African national guideline. 

(b) What is the performance of outlier detection methods in detecting LO’s and HO’s 
under South African conditions and should outlier detection be regular practice 
in DRE and DFE in SA? 
To address this question, the performance of outlier detection methods in detecting 

outlier observations were assessed [Aim (b)]. Undertaking a detailed review of relevant 

literature [Objective (a)], and applying and assessing the performance of the BP, MZS 

and MGBT methods in detecting outlier observations [Objective (d)] addressed Aim 

(b).  

Objective (a) was met by conducting a detailed review of relevant literature on the BP, 

MZS and MGBT as contained in Section 3.2.2. In summary, there are numerous outlier 

detection methods available and outlier detection is included in many international 

guidelines. The performance of various methods under South African conditions needs 

to be investigated. The MZS, BP and the MGBT methods were applied in this study. 

Objective (d) was met by applying the BP, MZS and MGBT methods to detect 

substituted outliers in observed and synthetically generated rainfall and streamflow 

datasets. Outlier detection methods were applied to observed data scenarios, i.e. Obs.L1 

to Obs.H3 for each driver rainfall and streamflow gauge and also to each of the 100 

synthetically generated rainfall and streamflow data series per scenario, i.e. Syn.L1 to 

Syn.H3 and per gauge as detailed in Section 3.4.1.1 and Section 3.4.2.1 respectively. 

The BP and MZS were applied to LO and HO scenarios whereas the MGBT was only 



Impacts of Floods and Data Availability, Data Quality and Data Screening on the Estimation of Design Floods 

 

102 

applied to LO scenarios as it is designed to only detect LOs. Details on the 

methodology, assumptions and limitations are provided in Section 3.5 

From observed data, the MGBT outperforms the BP and MZS in detecting LOs with a 

RD of Avg. detection, as detailed in Section 3.5.1.1, of up to -6% and -30% in observed 

rainfall and streamflow data, respectively. The MZS outperforms the BP method in 

detecting HOs with a RD of Avg. detection of up to 50% and 100% in observed rainfall 

and streamflow data respectively. From synthetically generated data series, the MZS 

outperforms the BP and MGBT in detecting LOs in rainfall datasets of up to -30%. The 

BP outperforms the MGBT and MZS in detecting LOs in streamflow datasets of up to 

-15%. The MZS outperforms the BP method in detecting HOs with an RD of Avg. 

detection by up to 20% and -3% in synthetically generated rainfall and streamflow data 

respectively.  

The performance of different outlier detection methods as presented in this study is 

aimed to inform the future application of such methods in both practice and research 

which will lead to a more accurate DRE and DFE. It is recommended from this study 

that the MGBT be used to detect LOs and the MZS be used to detect HOs in both rainfall 

and streamflow data in SA. 

(c) What is the impact of declining data availability, i.e. rainfall and streamflow 
record lengths and monitoring network density, on DRE and DFE in SA?  
To address this question, the impacts of reduced data availability on DRE and DFE in 

SA were assessed [Aim (c)]. A detailed review of relevant literature [Objective (a)], an 

evaluation of the impact of both a reduced rainfall and streamflow record length and of 

different periods of record on design rainfall and flood estimation [Objective (e)], and 

an evaluation of the impact of a reduced rainfall and streamflow gauged network 

density on design rainfall and flood estimation by means of a random and systematic 

reduction of gauges [Objective (f)] were undertaken to address Aim (c). 

Objective (a) was met by a detailed review of literature which included information 

about the current rainfall and streamflow gauging networks in South Africa and the 

importance of record length, gauge density and proximity on design rainfall and flood 

estimation. In summary, there is a decline of hydrological monitoring in SA (Pitman, 

2011; Pegram et al., 2016) , which affects the availability of gauge network density and 
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record length and severely impacts water resource management. An increased rainfall 

gauge density has been shown in other studies to improve, inter alia, simulated 

streamflow estimates, areal estimates of rainfall, MAP estimates and reduced under-

estimation of cumulative rainfall (Krajewski et al., 2003; St‐Hilaire et al., 2003; 

Bárdossy and Das, 2008; Xu et al., 2013). A dense streamflow gauge network is 

important for, inter alia, information transfer from gauged to ungauged catchments 

(Hrachowitz et al., 2013). Pool et al. (2019) further highlighted the importance of 

spatial proximity of gauges. Boughton (2007) concluded that rainfall record length is 

influential on estimated rainfall characteristics and on the performance of rainfall-

runoff modelling. Using streamflow datasets with shorter records can result in an over-

estimation of simulated streamflow and introduced more errors in rainfall-runoff model 

estimates (Boughton, 2007), however, these datasets are valuable for decision making 

in ungauged catchments (Pool et al., 2019). Further details are provided in Section 3.2. 

Objective (e) was met by reducing the length of the initial observed rainfall and 

streamflow AMS record of six rainfall and streamflow gauges within South Africa to 

75% and 50% by using a moving window approach. Three windows each representing 

a chronological time period for both 75% and 50% of the total length of the AMS were 

chosen. A total of six record length scenarios were created. Each record length scenario 

was then used to estimate design rainfall and floods, and these were compared to design 

events estimated using the entire record length. This comparison evaluated the impact 

of periods of records, i.e. windows within the total record length each representing a 

different chronological period of time, on DRE and DFE. Details on the methodology, 

assumptions and limitations are provided in Section 3.6. Regarding the impact of period 

of record, results show that estimated design rainfall events are impacted by up to 8% 

whereas design floods are impacted up to 95% when using different equal length 

periods of record.  

Regarding the impact of reduced record lengths, impacts across scenarios using 75% of 

the record (f.75, m.75, l.75) and across scenarios using 50% of the record (f.50, m.50 or 

l.50) were averaged to evaluate the overall impact of 75% and 50% of reduced record 

length on DRE and DFE. On average, design rainfall events are impacted by up to 4% 

and design floods impacted by up to 24%. There is a negligible difference in impact 

between design rainfall estimated using the 75% and 50% of AMS records scenario. 
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Design floods are impacted more when using the 50% of AMS record scenario 

compared to using 75% of the AMS record scenario. For the impact of period of record 

and the impact of reduced record length, significant differences between the impacts of 

design rainfall and floods may be attributed to the period of available rainfall (on 

average between 1880 and 2000) and streamflow (on average between 1954 and 2013) 

data, i.e. rainfall data covers a longer time period and possibly different climate regimes 

compared to streamflow data. The identification of climate regimes is beyond the scope 

of this study. The difference in impacts may also be associated to the assumption of 

stationarity as detailed in Section 2.1.2. Assessing the stationarity of rainfall and 

streamflow data is not in the scope of this study. 

Objective (f) was met by reducing the total available rainfall and streamflow gauged 

network density within three homogenous regions in South Africa to 75% and 50% 

using both random and systematic gauge reduction methods. For both gauge reduction 

methods, design rainfall and flood events at a PoI were estimated using an index rainfall 

and flood approach with the reduced network density scenarios and these were 

compared to design events estimated using the total available gauged network density 

to evaluate the impact of reduced network density. Details on the methodology, 

assumptions and limitations are provided in Section 3.7.  

Results from the systematic gauge removal highlight that design rainfall events are 

impacted by up to 4.2% from scenarios using 50% of the gauged network which are 

greater than impacts from scenarios using 75% of the gauged network, i.e. impacted by 

up to 2%. Design floods events are impacted by up to 28% from scenarios using 50% 

of the gauged network which are greater than impacts from scenarios using 75% of the 

gauged network, i.e. impacted by up to 17%. Design rainfall events are impacted by up 

to 4% from scenarios using the furthest gauged network which are greater than impacts 

from scenarios using the closest gauged network, i.e. impacted by up to 2.5%. Design 

floods events are impacted by up to 24% from scenarios using the closest gauged 

network which are slightly greater than impacts from scenarios using the furthest 

gauged network, i.e. impacted by up to 22%. The greater impact on design events 

estimated by the 50% gauged network scenario compared to the 75% gauged network 

scenario may be a result of a reduced regionalisation efficiency and principles from 

Tobler’s law of geography as detailed in Section 3.7.2.4. 
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Results highlight that design rainfall events are impacted by up to 4.5% from the 

Random.50% scenario which are greater than impacts from the Random.75% scenario, 

i.e. impacted by up to 2.2% across all regions. Design flood events are impacted by up 

to 60% from the Random.50% scenario which are greater than impacts from the 

Random.75% scenario, i.e. impacted by up to 30% across all regions.  

In general, results computed from a reduced gauge network indicate in practice and 

research that the use of a denser monitoring network and gauges in a closer proximity 

to a PoI will improve both the accuracy and confidence in DRE and DFE at ungauged 

sites thereby increasing the accuracy of infrastructural design which limits the risk to 

the safety of lives, and severe economic, environmental, and social consequences.  

It is recommended that this study be expanded to other regions in SA to have more 

confidence in the findings, and thereafter be used in a South African national guideline. 

It is also recommended from this study that additional national resources be directed 

towards maintaining and improving the hydrological monitoring networks in SA to 

ensure the availability of long-term and high-quality hydrological data which will 

increase the accuracy of DRE and DFE. 

Future recommendations for assessing the impacts of outlier events and data availability on 

design rainfall and flood estimations in SA include: (a) test the performance of each PD for 

each rainfall and streamflow record to reduce any inherent error in the design rainfall or flood 

estimate, (b) test the assumption of stationarity with each rainfall and streamflow record, and 

(c) identify possible climatic regimes in each rainfall and streamflow record to inform the 

methodology applied to address the impact of reduced record lengths on DRE and DFE. 
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CHAPTER 4: CAPACITY BUILDING 
The students involved in the project and their roles are summarised in Table 4.1. 

Table 4.1 List of students involved in the project 

Name Degree Research Topic/ 

Role 

Comment 

Ms Katelyn Johnson PhD Engineering Project leader  PhD student co-

supervising students 

working on the 

project. 

Ms Nelisiwe Khusi MSc Hydrology  Assessment of the 

socio – economic 

impacts of floods in 

South Africa 

Completed honours 

degree in 2019 and 

is currently an MSc 

student in 2020/21. 

Mr Keanu Singh MSc Hydrology  Assessment of data 

availability, quality, 

and screening on the 

estimation of design 

floods in South 

Africa 

Completed MSc 

hydrology degree 

and will graduate in 

2021. 

 

 

One conference paper was published during the project: 

Singh, KR, Smithers, JC and Johnson, KA. 2019. An Assessment of the Influence of Outlier 

Observations on Rainfall and Flood Frequency Analysis. In: ed. Hattingh, L, SANCOLD 

Conference 2019: Sustainable long-term dam infrastructure development and 

management, 259-269. South African National Committee on Large Dams (SANCOLD), 

Benoni, South Africa. 
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CHAPTER 6: APPENDIX A – INVENTORY OF SELECTED RAINFALL AND STREAMFLOW 

GAUGES 
This appendix contains an inventory of the driver rainfall and streamflow gauges used in this study, shown in Table A.1 and Table A.2 respectively. 

The reliable record lengths in Table A.1 and Table A.2 refer to the unedited observed record, i.e. no patching or infilling as detailed in Section 3.3. 

Table A.1 Driver rainfall gauges and associated attributes 

Station  
Number 

Streamflow 
Gauge ID 

Climate  
Zone 

Gericke 
(2015) 

Latitude 
(O) 

Longitude  
(O) 

Start  
Date 

End 
Date 

Total 
Record  
Length 
(Years) 

Reliable 
Record  
Length 
(Years) 

MAP 
(mm) 

Altitude 
(m) 

0239097 U2H013 ESC -29.62 30.07 09/1882 10/2001 113 46 1007 1540 

0268640 V2H004 ESC -29.17 29.87 09/1882 08/2001 107 82 877 1520 

0476031 A2H012 NI -26.01 28.05 05/1886 08/2000 107 49 649 1375 

0589670 A6H011 NI -24.67 28.37 02/1903 08/2000 96 82 598 1234 

0042227 G1H008 SWC -33.29 19.14 01/1850 12/2001 150 99 473 165 

0025414 H7H004 SWC -33.91 20.73 01/1878 12/2001 121 74 281 375 
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Table A.2 Driver streamflow gauges and associated attributes 
Streamflow 
Gauge ID 

Climate 
Zone 

Gericke 
(2015) 

HRU 
(1972) 
Zone 

Kovacs 
(1988) 

K-
Region 

Latitude 
(O) 

longitude 
(O) 

Start 
date 

End date Record 
length 
(Years) 

Actual 
Record 
Length 
(Years) 

Area  
(km2) 

U2H013 ESC 5 5 -29.51 30.09 08/1960 09/2013 54 46 295.70 

V2H004 ESC 9 5 -29.36 29.88 09/1972 11/2013 42 40 269.13 

A2H012 NI 8 5 -25.81 27.91 10/1922 12/2013 92 54 2579.65 

A6H011 NI 8 4.6 -24.76 28.34 11/1966 08/2013 48 40 73.66 

G1H008 SWC 2 5 -33.31 19.07 05/1954 11/2013 60 43 396.07 

H7H004 SWC 2 5 -33.91 20.71 05/1951 10/2013 63 42 25.60 
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CHAPTER 7: APPENDIX B – IMPACT OF OUTLIER 

EVENTS ON DESIGN RAINFALL AND FLOOD 

ESTIMATION 
This appendix contains results for the detailed assessment (cf. Section 3.4.1.1) for all study 

catchments. Appendix B1 and Appendix B2 in Section 7.1 and Section 7.2 contains results for 

observed data and synthetically generated data series respectively.  

7.1 APPENDIX B1: OBSERVED DATA 

Design rainfall results are presented in Section 7.1.1 followed by design floods in Section 7.1.2. 

7.1.1 Design rainfall 

Figure B1.1 to Figure B1.5 provides the calculated MRD, MARD, PBIAS and NSE for estimated 

design rainfall events of Rainfall Gauge 0476031, 0589670, 0025414, 0239097 and 0268640 

respectively.  
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Figure B1.1 Impact of LO (Obs.L2 and Obs.L3) and HO (Obs.H2 and Obs.H3) scenarios 

on design rainfall estimated by different PDs from observed data for 

Rainfall Gauge 0476031 
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Figure B1.2 Impact of LO (Obs.L1, Obs.L2 and Obs.L3) and HO (Obs.H1, Obs.H2 and 

Obs.H3) scenarios on design rainfall estimated by different PDs from 

observed data for Rainfall Gauge 0589670 
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Figure B1.3 Impact of LO (Obs.L1, Obs.L2 and Obs.L3) and HO (Obs.H1, Obs.H2 and 

Obs.H3) scenarios on design rainfall estimated by different PDs from 

observed data for Rainfall Gauge 0025414 
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Figure B1.4 Impact of LO (Obs.L1, Obs.L2 and Obs.L3) and HO (Obs.H1, Obs.H2 and 

Obs.H3) scenarios on design rainfall estimated by different PDs from 

observed data for Rainfall Gauge 0239097 
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Figure B1.5 Impact of LO (Obs.L1, Obs.L2 and Obs.L3) and HO (Obs.H1, Obs.H2 and 

Obs.H3) scenarios on design rainfall estimated by different PDs from 

observed data for Rainfall Gauge 0268640 
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7.1.2 Design floods 

Figure B1.6 to Figure B1.11 provides the calculated MRD, MARD, PBIAS and NSE for 

estimated design flood events in Catchment A2H012, A6H011, H7H004, G1H008, U2H013 

and V2H004 respectively.  

 

Figure B1.6 Impact of LO (Obs.L2 and Obs.L3) and HO (Obs.H2 and Obs.H3) scenarios 

on design floods estimated by different PDs from observed data in 

Catchment A2H012 
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Figure B1.7 Impact of LO (Obs.L2 and Obs.L3) and HO (Obs.H2 and Obs.H3) scenarios 

on design floods estimated by different PDs from observed data in 

Catchment A6H011 
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Figure B1.8 Impact of LO (Obs.L2 and Obs.L3) and HO (Obs.H2 and Obs.H3) scenarios 

on design floods estimated by different PDs from observed data in 

Catchment G1H008 
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Figure B1.9 Impact of LO (Obs.L2 and Obs.L3) and HO (Obs.H2 and Obs.H3) scenarios 

on design floods estimated by different PDs from observed data in 

Catchment H7H004 
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Figure B1.10 Impact of LO (Obs.L2 and Obs.L3) and HO (Obs.H2 and Obs.H3) scenarios 

on design floods estimated by different PDs from observed data in 

Catchment U2H013 
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Figure B1.11  Impact of LO (Obs.L2 and Obs.L3) and HO (Obs.H2 and Obs.H3) 

scenarios on design floods estimated by different PDs from observed data 

in Catchment V2H004 
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7.2 APPENDIX B2: SYNTHETICALLY GENERATED DATA SERIES 

Results for design rainfall estimates are first presented in Section 7.2.1 followed by results for 

design flood estimates in Section 7.2.2. 

7.2.1 Design rainfall 

Figure B2.1 to Figure B2.6 provides the calculated Avgd. MRD, Avgd. MARD, Avgd. PBIAS and 

Avgd. NSE for estimated design rainfall events of Rainfall Gauge 0476031, 0589670, 0025414, 

0239097 and 0268640 respectively. 

 

Figure B2.1 Impact of LO (Obs.L1, Obs.L2 and Obs.L3) and HO (Obs.H1, Obs.H2 and 

Obs.H3) scenarios on design rainfall estimated by different PD’s from 

synthetically generated data series for Rainfall Gauge 0476031 
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Figure B2.2  Impact LO (Obs.L1, Obs.L2 and Obs.L3) and HO (Obs.H1, Obs.H2 and 

Obs.H3) scenarios on design rainfall estimated by different PD’s from 

synthetically generated data series for Rainfall Gauge 0589670 
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Figure B2. 3 Impact of LO (Obs.L1, Obs.L2 and Obs.L3) and HO (Obs.H1, Obs.H2 and 

Obs.H3) scenarios on design rainfall estimated by different PD’s from 

synthetically generated data for Rainfall Gauge 0042227 
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Figure B2.4 Impact of LO (Obs.L1, Obs.L2 and Obs.L3) and HO (Obs.H1, Obs.H2 and 

Obs.H3) scenarios on design rainfall estimated by different PD’s from 

synthetically generated data for Rainfall Gauge 0025414 
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Figure B2.5 Impact of LO (Obs.L1, Obs.L2 and Obs.L3) and HO (Obs.H1, Obs.H2 and 

Obs.H3) scenarios on design rainfall estimated by different PD’s from 

synthetically generated data series for Rainfall Gauge 0239097 
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Figure B2.6 Impact LO (Obs.L1, Obs.L2 and Obs.L3) and HO (Obs.H1, Obs.H2 and 

Obs.H3) scenarios on design rainfall estimated by different PD’s from 

synthetically generated data series for Rainfall Gauge 0268640 
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7.2.2 Design floods 

Figure B2.7 to Figure B2.12 provides the calculated Avgd.. MRD, Avgd.. MARD, Avgd.. PBIAS 

and Avgd.. NSE for estimated design flood events in Catchment A2H012, A6H011, H7H004, 

G1H008, U2H013 and V2H004 respectively. 

 

Figure B2.7 Impact of LO (Obs.L1, Obs.L2 and Obs.L3) and HO (Obs.H1, Obs.H2 and 

Obs.H3) scenarios on design floods estimated by different PD’s from 

synthetically generated data series in Catchment A2H012 
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Figure B2.8 Impact of LO (Obs.L1, Obs.L2 and Obs.L3) and HO (Obs.H1, Obs.H2 and 

Obs.H3) scenarios on design floods estimated by different PD’s from 

synthetically generated data series in Catchment A6H011 
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Figure B2.9 Impact of LO (Obs.L1, Obs.L2 and Obs.L3) and HO (Obs.H1, Obs.H2 and 

Obs.H3) scenarios on design floods estimated by different PD’s from 

synthetically generated data series in Catchment G1H008 
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Figure B2.10 Impact of LO (Obs.L1, Obs.L2 and Obs.L3) and HO (Obs.H1, Obs.H2 and 

Obs.H3) scenarios on design floods estimated by different PD’s from 

synthetically generated data series in Catchment H7H004 
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Figure B2.11 Impact of LO (Obs.L1, Obs.L2 and Obs.L3) and HO (Obs.H1, Obs.H2 and 

Obs.H3) scenarios on design floods estimated by different PD’s from 

synthetically generated data series in Catchment U2H013 
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Figure B2.12  Impact of LO (Obs.L1, Obs.L2 and Obs.L3) and HO (Obs.H1, Obs.H2 and 

Obs.H3) scenarios on design floods estimated by different PD’s from 

synthetically generated data series in Catchment V2H004 
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CHAPTER 8: APPENDIX C – PERFORMANCE OF 

OUTLIER DETECTION METHODS 
This appendix provides results on the percentage of substituted and detected outliers using the 

BP, MZS and MGBT method on observed streamflow data and synthetically generated rainfall 

and streamflow data series with LO and HO scenarios, as shown in Figure C.1 to Figure C.9.  

 
Figure C.1 Percentage of substituted and detected outliers using the BP method on 

observed streamflow data with LO (Obs.L1, Obs.L2 and Obs.L3) and HO 

(Obs.H1, Obs.H2 and Obs.H3) scenarios 

 
Figure C.2 Percentage of substituted and detected outliers using the MZS method on 

observed streamflow data with LO (Obs.L1, Obs.L2 and Obs.L3) and HO 

(Obs.H1, Obs.H2 and Obs.H3) scenarios 



Impacts of Floods and Data Availability, Data Quality and Data Screening on the Estimation of Design Floods 

 

147 

 
Figure C.3 Percentage of substituted and detected outliers using the MGBT method on 

observed streamflow data with LO (Obs.L1, Obs.L2 and L3) scenarios 

 
Figure C.4 Percentage of substituted and detected outliers using the BP method on 

synthetically generated rainfall data series with LO (Syn.L1, Syn.L2 and 

Syn.L3) and HO (Syn.H1, Syn.H2 and Syn.H3) scenarios 
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Figure C.5 Percentage of substituted and detected outliers using the MZS method 

synthetically generated rainfall data series with LO (Syn.L1, Syn.L2 and 

Syn.L3) and HO (Syn.H1, Syn.H2 and Syn.H3) scenarios 

 
Figure C.6 Percentage of substituted and detected outliers using the MGBT method on 

synthetically generated rainfall data series with LO (Syn.L1, Syn.L2 and 

Syn.L3) scenarios 
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Figure C.7 Percentage of substituted and detected outliers using the BP method on 

synthetically generated streamflow data series with LO (Syn.L1, Syn.L2 and 

Syn.L3) and HO (Syn.H1, Syn.H2 and Syn.H3) scenarios 

 
Figure C.8 Percentage of substituted and detected outliers using the MZS method 

synthetically generated streamflow data series with LO (Syn.L1, Syn.L2 and 

Syn.L3) and HO (Syn.H1, Syn.H2 and Syn.H3) scenarios 
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Figure C.9 Percentage of substituted and detected outliers using the MGBT method on 

synthetically generated streamflow data series with LO (Syn.L1, Syn.H2 and Syn.L3) scenarios 
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CHAPTER 9: APPENDIX D – IMPACT OF REDUCED NETWORK DENSITY ON DESIGN 

RAINFALL AND FLOOD ESTIMATION 

This appendix contains attribute information and results regarding the impact of a reduced gauged network cf. Section 3.7.  

9.1 APPENDIX D1: GAUGE INVENTORY FOR THE IMPACT OF REDUCED NETWORK DENSITY ON DESIGN RAINFALL 

AND FLOOD ESTIMATION 

Appendix D1 contains an inventory of the rainfall and streamflow gauges used to evaluate the impact of reduced record length on DRE and 
DFE. Table D1.1 and Figure D1.1, Figure D1.2 and Figure D1.3 detailing rainfall gauges with   
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Table D1.2 and Figure D1.4, Figure D1.5 and Figure D1.6 detailing streamflow gauges with associated attributes.  

Table D1.1 Rainfall gauges and associated attributes used in the analysis of a reduced gauge network on design rainfall estimation 

Station  

Number 

Cluster Gericke 

(2015) 

Climate  

Zone 

Latitude 

(°) 

Longitude  

(°) 

Start  

Date 

End 

Date 

Total 

Record  

Length 

(Years) 

Reliable 

Record  

Length 

(Years) 

MAP 

(mm) 

Altitude 

(m) 

0151604 74 ESC -31.07 28.35 1884/03 2001/12 115 99 746 1250 

0151623 74 ESC -31.40 28.34 1880/01 2000/07 116 52 637 1338 

0152190 74 ESC -31.17 28.62 1888/04 2001/08 111 74 1091 1378 

0152259 74 ESC -31.36 28.60 1884/03 2001/12 116 69 913 1036 

0152475 74 ESC -31.42 28.77 1888/04 2001/12 110 77 1211 1200 

0152792 74 ESC -31.20 28.92 1888/04 2000/07 109 71 834 991 

0153631 74 ESC -31.02 29.36 1882/09 2001/12 107 74 1168 1039 

0179353 74 ESC -30.88 28.68 1884/03 2001/07 112 68 981 1298 

0179713 74 ESC -30.89 28.89 1888/04 2001/12 111 78 1130 1311 

0179790 74 ESC -30.67 28.95 1890/03 2000/08 109 68 897 1463 

0179864 74 ESC -30.90 28.99 1888/04 2000/07 110 65 845 1134 

0180030 74 ESC -31.00 29.02 1888/04 2001/12 111 74 754 1154 

0180123 74 ESC -30.56 29.08 1882/09 2000/08 110 70 982 1481 

0180439 74 ESC -30.82 29.26 1882/09 2001/12 112 79 921 1118 
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Station  

Number 

Cluster Gericke 

(2015) 

Climate  

Zone 

Latitude 

(°) 

Longitude  

(°) 

Start  

Date 

End 

Date 

Total 

Record  

Length 

(Years) 

Reliable 

Record  

Length 

(Years) 

MAP 

(mm) 

Altitude 

(m) 

0180537 74 ESC -30.96 29.30 1882/09 2001/12 111 80 646 1129 

0590361 28 NI -24.52 28.72 1903/09 2000/08 96 89 608 1100 

0590486 28 NI -24.60 28.79 1903/09 2000/08 96 64 604 1082 

0632274 28 NI -24.06 28.17 1903/02 2000/08 96 62 653 1463 

0632726 28 NI -24.11 28.42 1903/09 2000/08 96 48 625 1320 

0633463 28 NI -24.22 28.77 1903/09 2000/08 96 56 591 1130 

0633796 28 NI -24.27 28.96 1903/09 2000/08 96 65 604 1082 

0633881 28 NI -24.18 29.01 1903/09 2000/08 96 82 621 1094 

0634131 28 NI -24.18 29.07 1903/09 2000/08 96 77 584 1219 

0676237 28 NI -23.95 28.63 1903/09 2000/08 96 56 514 988 

0676705 28 NI -23.75 28.91 1903/09 2000/08 96 50 489 1082 

0002885 1 SWC -34.75 20.00 1875/02 2001/12 124 87 471 12 

0003032 1 SWC -34.53 20.04 1875/02 2000/07 122 109 467 91 

0003192 1 SWC -34.71 20.10 1875/02 2001/12 122 48 413 12 

0007698 1 SWC -34.13 19.90 1875/02 2001/09 123 52 431 295 

0007699 1 SWC -34.16 19.89 1875/02 2001/12 124 51 418 162 

0008136 1 SWC -34.27 20.08 1875/02 2000/07 122 49 402 244 
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Station  

Number 

Cluster Gericke 

(2015) 

Climate  

Zone 

Latitude 

(°) 

Longitude  

(°) 

Start  

Date 

End 

Date 

Total 

Record  

Length 

(Years) 

Reliable 

Record  

Length 

(Years) 

MAP 

(mm) 

Altitude 

(m) 

0008367 1 SWC -34.12 20.23 1875/02 2001/12 122 67 333 168 

0008470 1 SWC -34.32 20.30 1875/02 2001/12 124 67 387 168 

0008751 1 SWC -34.00 20.44 1883/05 2001/12 115 68 884 250 

0008782 1 SWC -34.03 20.45 1883/05 2001/12 115 108 740 143 

0023619 1 SWC -33.81 19.88 1877/10 2000/07 121 60 287 183 

0023674 1 SWC -33.76 19.88 1877/12 2000/07 121 61 499 375 

0023678 1 SWC -33.80 19.88 1877/10 2000/07 121 104 322 183 

0024146 1 SWC -33.94 20.10 1877/10 2000/07 121 56 267 120 

0024197 1 SWC -33.79 20.13 1877/10 2001/12 122 86 321 223 

0025414 1 SWC -33.91 20.73 1878/01 2001/12 121 74 281 375 
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Figure D1.1 Rainfall gauges within the ESC homogenous region used to evaluate the impact of reduced network density on design rainfall 

estimates  
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Figure D1.2 Rainfall gauges within the NI homogenous region used to evaluate the impact of reduced network density on design rainfall 

estimates  
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Figure D1.3 Rainfall gauges within the SWC homogenous region used to evaluate the impact of reduced network density on design rainfall 

estimates 
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Table D1.2 Streamflow gauges and associated attributes used in the analysis of a reduced gauge network on design flood estimation 

Gauge ID Gericke 

(2015) 

Climate 

Zone 

HRU 

(1972) 

Zone 

Kovacs 

(1988) 

K-

Region 

Latitude 

(°) 

longitude 

(°) 

Start date End date Record 

length 

(Years) 

Actual 

Record 

Length 

(Years) 

Area  

(km2) 

V1H009 ESC 9 5 -28.89 29.77 1954/01/15 2013/11/04 61 44 196.69 

V1H010 ESC 9 5 -28.82 29.55 1964/11/26 2014/01/06 51 36 786.65 

V1H038 ESC 9 5 -28.56 29.75 1971/10/19 2013/11/05 43 29 1660.1 

V2H004 ESC 9 5 -29.07 30.25 1960/05/01 2013/11/14 54 39 1555.77 

V3H007 ESC 9 5 -29.24 29.79 1972/07/28 2013/11/12 42 45 115.33 

V6H004 ESC 9 5 -28.4 30.01 1954/01/01 2014/01/08 61 41 663.92 

V7H012 ESC 9 5 -29.01 29.88 1962/11/17 2013/11/12 52 30 199.89 

V7H016 ESC 9 5 -29.19 29.63 1972/10/23 2013/11/07 43 28 122.12 

V7H017 ESC 9 5 -29.19 29.64 1972/10/23 2013/11/12 42 28 282.24 

A2H012 NI 8 5 -25.81 27.91 1922/10/01 2013/12/11 92 57 2579.65 

A2H013 NI 8 5 -25.78 27.76 1922/10/01 2013/12/11 93 58 1164.43 

A2H023 NI 8 5 -25.95 27.96 1965/10/23 2013/12/09 50 32 689.85 

A2H044 NI 8 5 -25.9 27.93 1971/07/18 2013/12/11 43 37 764.04 

A2H045 NI 8 5 -25.89 27.91 1972/05/25 2013/12/11 42 29 663.72 

A2H049 NI 8 5 -25.98 27.84 1972/07/04 2013/12/09 43 34 372.83 

A2H050 NI 8 5 -25.99 27.84 1973/04/06 2013/12/09 41 34 152.63 
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Gauge ID Gericke 

(2015) 

Climate 

Zone 

HRU 

(1972) 

Zone 

Kovacs 

(1988) 

K-

Region 

Latitude 

(°) 

longitude 

(°) 

Start date End date Record 

length 

(Years) 

Actual 

Record 

Length 

(Years) 

Area  

(km2) 

A2H063 NI 8 5 -25.7 28.19 1984/05/10 2013/12/10 30 24 33.28 

G1H010 SWC 2 5 -33.39 19.16 1964/05/05 2013/11/07 50 42 10.4 

G1H011 SWC 2 5 -33.38 19.15 1964/04/29 2013/11/07 50 38 18.29 

G1H012 SWC 2 5 -33.35 19.1 1964/04/20 1996/06/04 33 21 34.43 

G1H015 SWC 2 5 -33.82 19.06 1964/06/06 1988/07/18 25 19 1.8 

G1H017 SWC 2 5 -33.83 19.03 1964/06/06 1988/07/19 25 20 1.76 

G1H018 SWC 2 5 -33.82 19.05 1964/06/06 2013/08/27 50 25 3.49 

G1H029 SWC 2 5 -33.16 19.05 1972/11/30 2013/11/07 42 29 35.66 

G1H040 SWC 2 5 -33.36 18.96 1979/08/16 2013/11/06 35 32 37.62 

H1H013 SWC 2 5 -33.36 19.3 1965/02/24 2013/11/04 49 29 62.63 

H2H005 SWC 2 5 -33.46 19.62 1969/09/26 2013/11/12 45 38 14.81 

H2H008 SWC 2 5 -33.33 19.64 1982/06/29 2013/11/04 32 25 9.69 

J1H016 SWC 2 5 -33.29 19.73 1974/06/24 2013/11/04 40 26 30.88 
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Figure D1.4 Selected streamflow gauges within the ESC homogenous region used to evaluate the impact of reduced network density on 

design flood estimates 
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Figure D1.5 Selected streamflow gauges within the NI homogenous region used to evaluate the impact of reduced network density on design 

flood estimates 
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Figure D1.6 Selected streamflow gauges within the SWC homogenous region used to evaluate the impact of reduced network density on 

design flood estimates 
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9.2 APPENDIX D2: IMPACT OF REDUCED NETWORK DENSITY ON DESIGN 

FLOOD ESTIMATION USING SYNTHETICALLY GENERATED DATA 

SERIES 

Figure D2.1 provides results of MRD, MARD, PBIAS and NSE for design flood events 

estimated using scenarios (Closest.75%, Closest.50%, Furthest.75% and Furthest.50%) of a 

systematically reduced gauge network. 

 
Figure D2.1 MRD, PBIAS, MARD and NSE for design flood events estimated using 

scenarios (Closest.75%, Closest.50%, Furthest.75% and Furthest.50%) of 

a systematically reduced gauge network 

 

 

  

  
 


	EXECUTIVE SUMMARY
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ACRONYMS & ABBREVIATIONS
	CHAPTER 1: BACKGROUND
	1.1 INTRODUCTION
	1.2 PROJECT AIMS

	CHAPTER 2:  AN ASSESSMENT OF THE SOCIO – ECONOMIC IMPACTS OF FLOODS IN SOUTH AFRICA
	2.1 INTRODUCTION
	2.2 AIMS AND OBJECTIVES
	2.3 BACKGROUND
	2.4 ASSESMENT OF HISTORICAL FLOOD EVENTS
	2.4.1 Methodology
	2.4.1.1 Database development
	2.4.1.2 Classifications of flood events

	2.4.2 Results
	2.4.2.1 Sources of data
	2.4.2.2 Spatial distribution
	2.4.2.3 Time-series analysis


	2.5 ASSESSING THE SOCIO-ECONOMIC IMPACTS
	2.5.1 Fatalities
	2.5.2 Standardisation of the estimated costs
	2.5.3 Results

	2.6 DISCUSSIONS, CONCLUSIONS AND RECOMMENDATIONS

	CHAPTER 3:  DETECTING AND ASSESSING THE IMPACTS OF OUTLIER EVENTS AND DATA AVAILABILITY ON DESIGN RAINFALL AND FLOOD ESTIMATION IN SOUTH AFRICA
	3.1 INTRODUCTION
	3.1.1 Research questions
	3.1.2 Aims and objectives

	3.2 BACKGROUND
	3.2.1 Assessment of data availability
	3.2.1.1 Rainfall data
	3.2.1.2 Streamflow data

	3.2.2 Outlier events and outlier detection methods
	3.2.2.1 Low outlier events
	3.2.2.2 High outlier events
	3.2.2.3 Outlier detection methods
	3.2.2.3.1 BoxPlots
	3.2.2.3.2 Standardised Z-Score
	3.2.2.3.3 Modified Z-Score
	3.2.2.3.4 Multiple Grubbs-Beck test


	3.2.3 Chapter discussion and conclusion

	3.3 Study Area and Data Collation
	3.4 Impact of Outlier Events on Design Rainfall and Flood Estimated Using Different Probability Distributions
	3.4.1 Use of observed data
	3.4.1.1 Methodology
	3.4.1.2 Design rainfall
	3.4.1.2.1 Detailed assessment
	3.4.1.2.2 Summative assessment

	3.4.1.3 Design floods
	3.4.1.4 Summary of results

	3.4.2 Use of synthetically generated data series
	3.4.2.1 Methodology
	3.4.2.2 Design rainfall
	3.4.2.3 Design floods
	3.4.2.4 Summary of results

	3.4.3 Summary and conclusions

	3.5 Performance of Outlier Detection Methods
	3.5.1 Use of observed data
	3.5.1.1 Methodology
	3.5.1.2 Rainfall
	3.5.1.2.1 Detailed assessment
	3.5.1.2.2 Summative assessment

	3.5.1.3 Streamflow
	3.5.1.4 Summary of results

	3.5.2 Use of synthetically generated data series
	3.5.2.1 Methodology
	3.5.2.2 Rainfall
	3.5.2.3 Streamflow
	3.5.2.4 Summary of results

	3.5.3 Section summary and conclusions

	3.6 Impact of Period of Record and Reduced Record Length on Design Rainfall and Flood Estimation
	3.6.1 Impact of period of record
	3.6.1.1 Methodology
	3.6.1.2 Design rainfall
	3.6.1.3 Design floods
	3.6.1.4 Summary of results

	3.6.2 Impact of reduced record length
	3.6.2.1 Methodology
	3.6.2.2 Design rainfall
	3.6.2.3 Design floods
	3.6.2.4 Summary of results

	3.6.3 Section summary and conclusion

	3.7 Impact of a Reduced Network Density on Design Rainfall
	3.7.1 General approach
	3.7.2 Systematic removal of gauges
	3.7.2.1 Methodology
	3.7.2.2 Design rainfall
	3.7.2.2.1 Detailed assessment
	3.7.2.2.2 Summative assessment

	3.7.2.3 Design floods
	3.7.2.4 Summary of results

	3.7.3 Random removal of gauges
	3.7.3.1 Methodology
	3.7.3.2 Design rainfall
	3.7.3.3 Design floods
	3.7.3.4 Summary of results

	3.7.4 Section summary and conclusion

	3.8 Discussion, Conclusions and Recommendations

	CHAPTER 4: CAPACITY BUILDING
	CHAPTER 5:  REFERENCES
	CHAPTER 6: APPENDIX A – INVENTORY OF SELECTED RAINFALL AND STREAMFLOW GAUGES
	CHAPTER 7: APPENDIX B – IMPACT OF OUTLIER EVENTS ON DESIGN RAINFALL AND FLOOD ESTIMATION
	7.1 Appendix B1: Observed Data
	7.1.1 Design rainfall
	7.1.2 Design floods

	7.2 Appendix B2: Synthetically Generated Data Series
	7.2.1 Design rainfall
	7.2.2 Design floods


	CHAPTER 8: APPENDIX C – PERFORMANCE OF OUTLIER DETECTION METHODS
	CHAPTER 9: APPENDIX D – IMPACT OF REDUCED NETWORK DENSITY ON DESIGN RAINFALL AND FLOOD ESTIMATION
	9.1 Appendix D1: Gauge Inventory for the Impact of Reduced Network Density on Design Rainfall and Flood Estimation
	9.2 Appendix D2: Impact of Reduced Network Density on Design Flood Estimation using Synthetically Generated Data Series


